{"title":"mrna -脂质加合物形成的鉴定和机理分析方法。","authors":"Sebastien Peronin, Camille Malburet, Chamsan Daher-Hassan, Christelle Picard, Thibaut Willemin, Federica Costamagna, Luc Even, Thierry Eynard, Fethi Bensaid, Stéphanie Fertier-Prizzon, Marc Francois-Heude","doi":"10.1016/j.omtn.2025.102684","DOIUrl":null,"url":null,"abstract":"<p><p>Messenger ribonucleic acid (mRNA), a promising tool in vaccine and therapeutic development, is reliant on intact mRNA delivery into target cells. Given its susceptibility to degradation, ensuring its stability is crucial, necessitating rigorous quality control throughout the product life cycle. This study presents an ion-pair reverse-phase liquid chromatography method that enables rapid and direct mRNA extraction from lipid nanoparticles, facilitated by using a surfactant in the sample preparation. This method, optimized using design of experiments (DoE), allows relative quantification of intact mRNA, mRNA fragments, and mRNA-lipid adducts. Forced degradation studies were used to investigate the impact of mRNA-lipid adducts on protein expression and to identify their chemical structures. The structures, identified by mass spectrometry, suggest reaction mechanisms that differ from those described in the literature so far. Further studies evaluated how formulation parameters such as pH, ionic strength, and buffering species affect mRNA-lipid adduct formation and mRNA fragmentation. A DoE assessed the impact of formulation parameters on mRNA integrity and mRNA-lipid adducts, showing that pH plays the major role. Overall, these findings have significant implications for the design and development of future mRNA-based biopharmaceuticals.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"36 3","pages":"102684"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410351/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analytical approach for identification and mechanistic insights into mRNA-lipid adduct formation.\",\"authors\":\"Sebastien Peronin, Camille Malburet, Chamsan Daher-Hassan, Christelle Picard, Thibaut Willemin, Federica Costamagna, Luc Even, Thierry Eynard, Fethi Bensaid, Stéphanie Fertier-Prizzon, Marc Francois-Heude\",\"doi\":\"10.1016/j.omtn.2025.102684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Messenger ribonucleic acid (mRNA), a promising tool in vaccine and therapeutic development, is reliant on intact mRNA delivery into target cells. Given its susceptibility to degradation, ensuring its stability is crucial, necessitating rigorous quality control throughout the product life cycle. This study presents an ion-pair reverse-phase liquid chromatography method that enables rapid and direct mRNA extraction from lipid nanoparticles, facilitated by using a surfactant in the sample preparation. This method, optimized using design of experiments (DoE), allows relative quantification of intact mRNA, mRNA fragments, and mRNA-lipid adducts. Forced degradation studies were used to investigate the impact of mRNA-lipid adducts on protein expression and to identify their chemical structures. The structures, identified by mass spectrometry, suggest reaction mechanisms that differ from those described in the literature so far. Further studies evaluated how formulation parameters such as pH, ionic strength, and buffering species affect mRNA-lipid adduct formation and mRNA fragmentation. A DoE assessed the impact of formulation parameters on mRNA integrity and mRNA-lipid adducts, showing that pH plays the major role. Overall, these findings have significant implications for the design and development of future mRNA-based biopharmaceuticals.</p>\",\"PeriodicalId\":18821,\"journal\":{\"name\":\"Molecular Therapy. Nucleic Acids\",\"volume\":\"36 3\",\"pages\":\"102684\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy. Nucleic Acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtn.2025.102684\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/9 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2025.102684","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Analytical approach for identification and mechanistic insights into mRNA-lipid adduct formation.
Messenger ribonucleic acid (mRNA), a promising tool in vaccine and therapeutic development, is reliant on intact mRNA delivery into target cells. Given its susceptibility to degradation, ensuring its stability is crucial, necessitating rigorous quality control throughout the product life cycle. This study presents an ion-pair reverse-phase liquid chromatography method that enables rapid and direct mRNA extraction from lipid nanoparticles, facilitated by using a surfactant in the sample preparation. This method, optimized using design of experiments (DoE), allows relative quantification of intact mRNA, mRNA fragments, and mRNA-lipid adducts. Forced degradation studies were used to investigate the impact of mRNA-lipid adducts on protein expression and to identify their chemical structures. The structures, identified by mass spectrometry, suggest reaction mechanisms that differ from those described in the literature so far. Further studies evaluated how formulation parameters such as pH, ionic strength, and buffering species affect mRNA-lipid adduct formation and mRNA fragmentation. A DoE assessed the impact of formulation parameters on mRNA integrity and mRNA-lipid adducts, showing that pH plays the major role. Overall, these findings have significant implications for the design and development of future mRNA-based biopharmaceuticals.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.