{"title":"EEG- ernet:基于节奏脑电图卷积神经网络模型的情绪识别。","authors":"Shuang Zhang, Chen Ling, Jingru Wu, Jiawen Li, Jiujiang Wang, Yuanyu Yu, Xin Liu, Jujian Lv, Mang I Vai, Rongjun Chen","doi":"10.31083/JIN41547","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Emotion recognition from electroencephalography (EEG) can play a pivotal role in the advancement of brain-computer interfaces (BCIs). Recent developments in deep learning, particularly convolutional neural networks (CNNs) and hybrid models, have significantly enhanced interest in this field. However, standard convolutional layers often conflate characteristics across various brain rhythms, complicating the identification of distinctive features vital for emotion recognition. Furthermore, emotions are inherently dynamic, and neglecting their temporal variability can lead to redundant or noisy data, thus reducing recognition performance. Complicating matters further, individuals may exhibit varied emotional responses to identical stimuli due to differences in experience, culture, and background, emphasizing the necessity for subject-independent classification models.</p><p><strong>Methods: </strong>To address these challenges, we propose a novel network model based on depthwise parallel CNNs. Power spectral densities (PSDs) from various rhythms are extracted and projected as 2D images to comprehensively encode channel, rhythm, and temporal properties. These rhythmic image representations are then processed by a newly designed network, EEG-ERnet (Emotion Recognition Network), developed to process the rhythmic images for emotion recognition.</p><p><strong>Results: </strong>Experiments conducted on the dataset for emotion analysis using physiological signals (DEAP) using 10-fold cross-validation demonstrate that emotion-specific rhythms within 5-second time intervals can effectively support emotion classification. The model achieves average classification accuracies of 93.27 ± 3.05%, 92.16 ± 2.73%, 90.56 ± 4.44%, and 86.68 ± 5.66% for valence, arousal, dominance, and liking, respectively.</p><p><strong>Conclusions: </strong>These findings provide valuable insights into the rhythmic characteristics of emotional EEG signals. Furthermore, the EEG-ERnet model offers a promising pathway for the development of efficient, subject-independent, and portable emotion-aware systems for real-world applications.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"24 8","pages":"41547"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG-ERnet: Emotion Recognition based on Rhythmic EEG Convolutional Neural Network Model.\",\"authors\":\"Shuang Zhang, Chen Ling, Jingru Wu, Jiawen Li, Jiujiang Wang, Yuanyu Yu, Xin Liu, Jujian Lv, Mang I Vai, Rongjun Chen\",\"doi\":\"10.31083/JIN41547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Emotion recognition from electroencephalography (EEG) can play a pivotal role in the advancement of brain-computer interfaces (BCIs). Recent developments in deep learning, particularly convolutional neural networks (CNNs) and hybrid models, have significantly enhanced interest in this field. However, standard convolutional layers often conflate characteristics across various brain rhythms, complicating the identification of distinctive features vital for emotion recognition. Furthermore, emotions are inherently dynamic, and neglecting their temporal variability can lead to redundant or noisy data, thus reducing recognition performance. Complicating matters further, individuals may exhibit varied emotional responses to identical stimuli due to differences in experience, culture, and background, emphasizing the necessity for subject-independent classification models.</p><p><strong>Methods: </strong>To address these challenges, we propose a novel network model based on depthwise parallel CNNs. Power spectral densities (PSDs) from various rhythms are extracted and projected as 2D images to comprehensively encode channel, rhythm, and temporal properties. These rhythmic image representations are then processed by a newly designed network, EEG-ERnet (Emotion Recognition Network), developed to process the rhythmic images for emotion recognition.</p><p><strong>Results: </strong>Experiments conducted on the dataset for emotion analysis using physiological signals (DEAP) using 10-fold cross-validation demonstrate that emotion-specific rhythms within 5-second time intervals can effectively support emotion classification. The model achieves average classification accuracies of 93.27 ± 3.05%, 92.16 ± 2.73%, 90.56 ± 4.44%, and 86.68 ± 5.66% for valence, arousal, dominance, and liking, respectively.</p><p><strong>Conclusions: </strong>These findings provide valuable insights into the rhythmic characteristics of emotional EEG signals. Furthermore, the EEG-ERnet model offers a promising pathway for the development of efficient, subject-independent, and portable emotion-aware systems for real-world applications.</p>\",\"PeriodicalId\":16160,\"journal\":{\"name\":\"Journal of integrative neuroscience\",\"volume\":\"24 8\",\"pages\":\"41547\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of integrative neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/JIN41547\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/JIN41547","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
EEG-ERnet: Emotion Recognition based on Rhythmic EEG Convolutional Neural Network Model.
Background: Emotion recognition from electroencephalography (EEG) can play a pivotal role in the advancement of brain-computer interfaces (BCIs). Recent developments in deep learning, particularly convolutional neural networks (CNNs) and hybrid models, have significantly enhanced interest in this field. However, standard convolutional layers often conflate characteristics across various brain rhythms, complicating the identification of distinctive features vital for emotion recognition. Furthermore, emotions are inherently dynamic, and neglecting their temporal variability can lead to redundant or noisy data, thus reducing recognition performance. Complicating matters further, individuals may exhibit varied emotional responses to identical stimuli due to differences in experience, culture, and background, emphasizing the necessity for subject-independent classification models.
Methods: To address these challenges, we propose a novel network model based on depthwise parallel CNNs. Power spectral densities (PSDs) from various rhythms are extracted and projected as 2D images to comprehensively encode channel, rhythm, and temporal properties. These rhythmic image representations are then processed by a newly designed network, EEG-ERnet (Emotion Recognition Network), developed to process the rhythmic images for emotion recognition.
Results: Experiments conducted on the dataset for emotion analysis using physiological signals (DEAP) using 10-fold cross-validation demonstrate that emotion-specific rhythms within 5-second time intervals can effectively support emotion classification. The model achieves average classification accuracies of 93.27 ± 3.05%, 92.16 ± 2.73%, 90.56 ± 4.44%, and 86.68 ± 5.66% for valence, arousal, dominance, and liking, respectively.
Conclusions: These findings provide valuable insights into the rhythmic characteristics of emotional EEG signals. Furthermore, the EEG-ERnet model offers a promising pathway for the development of efficient, subject-independent, and portable emotion-aware systems for real-world applications.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.