YuYing Song, NaNa Feng, QingYa Yu, YuanYuan Li, MingKun Meng, Xing Yang, ZhiQiang Gan, Tong Xu, Ce Tang, Yi Zhang
{"title":"疾病治疗中的外泌体:植物源性外泌体样纳米颗粒的现状、挑战和未来前景。","authors":"YuYing Song, NaNa Feng, QingYa Yu, YuanYuan Li, MingKun Meng, Xing Yang, ZhiQiang Gan, Tong Xu, Ce Tang, Yi Zhang","doi":"10.2147/IJN.S540094","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes are nano-sized extracellular vesicles secreted by diverse cell types that mediate intercellular communication through the transfer of proteins, lipids, and nucleic acids. Their ability to cross biological barriers and carry bioactive cargo has led to increasing interest in their use as targeted delivery systems for drugs, genes, and immunomodulatory molecules. Recently, plant-derived exosome-like nanoparticles, PLNs obtained from edible plants and medicinal herbs have emerged as a novel, biocompatible alternative to mammalian exosomes. PLNs exhibit low immunogenicity, enhanced safety, and scalable production, making them ideal candidates for clinical translation. This review synthesizes a wide body of experimental data on the biogenesis, molecular composition, and biological activity of PLNs, and provides a comparative assessment of their therapeutic applications across oncology, immunotherapy, regenerative medicine, and gene therapy. Technological advances in PLN engineering, isolation, and manufacturing are discussed, along with key translational barriers such as stability, regulatory standards, and delivery specificity. This review also discusses the scientific implications of PLNs in advancing precision medicine and propose future directions for their integration into next-generation nanotherapeutics.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"10613-10644"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410150/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exosomes in Disease Therapy: Plant-Derived Exosome-Like Nanoparticles Current Status, Challenges, and Future Prospects.\",\"authors\":\"YuYing Song, NaNa Feng, QingYa Yu, YuanYuan Li, MingKun Meng, Xing Yang, ZhiQiang Gan, Tong Xu, Ce Tang, Yi Zhang\",\"doi\":\"10.2147/IJN.S540094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exosomes are nano-sized extracellular vesicles secreted by diverse cell types that mediate intercellular communication through the transfer of proteins, lipids, and nucleic acids. Their ability to cross biological barriers and carry bioactive cargo has led to increasing interest in their use as targeted delivery systems for drugs, genes, and immunomodulatory molecules. Recently, plant-derived exosome-like nanoparticles, PLNs obtained from edible plants and medicinal herbs have emerged as a novel, biocompatible alternative to mammalian exosomes. PLNs exhibit low immunogenicity, enhanced safety, and scalable production, making them ideal candidates for clinical translation. This review synthesizes a wide body of experimental data on the biogenesis, molecular composition, and biological activity of PLNs, and provides a comparative assessment of their therapeutic applications across oncology, immunotherapy, regenerative medicine, and gene therapy. Technological advances in PLN engineering, isolation, and manufacturing are discussed, along with key translational barriers such as stability, regulatory standards, and delivery specificity. This review also discusses the scientific implications of PLNs in advancing precision medicine and propose future directions for their integration into next-generation nanotherapeutics.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"20 \",\"pages\":\"10613-10644\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410150/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S540094\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S540094","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Exosomes in Disease Therapy: Plant-Derived Exosome-Like Nanoparticles Current Status, Challenges, and Future Prospects.
Exosomes are nano-sized extracellular vesicles secreted by diverse cell types that mediate intercellular communication through the transfer of proteins, lipids, and nucleic acids. Their ability to cross biological barriers and carry bioactive cargo has led to increasing interest in their use as targeted delivery systems for drugs, genes, and immunomodulatory molecules. Recently, plant-derived exosome-like nanoparticles, PLNs obtained from edible plants and medicinal herbs have emerged as a novel, biocompatible alternative to mammalian exosomes. PLNs exhibit low immunogenicity, enhanced safety, and scalable production, making them ideal candidates for clinical translation. This review synthesizes a wide body of experimental data on the biogenesis, molecular composition, and biological activity of PLNs, and provides a comparative assessment of their therapeutic applications across oncology, immunotherapy, regenerative medicine, and gene therapy. Technological advances in PLN engineering, isolation, and manufacturing are discussed, along with key translational barriers such as stability, regulatory standards, and delivery specificity. This review also discusses the scientific implications of PLNs in advancing precision medicine and propose future directions for their integration into next-generation nanotherapeutics.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.