土耳其Refahiye地区美味乳牛分布的Biomod2统计与机器学习方法比较分析。

IF 3 3区 生物学 Q2 MYCOLOGY
Fungal biology Pub Date : 2025-10-01 Epub Date: 2025-08-07 DOI:10.1016/j.funbio.2025.101638
Daniela Cedano Giraldo, Derya Mumcu Kucuker
{"title":"土耳其Refahiye地区美味乳牛分布的Biomod2统计与机器学习方法比较分析。","authors":"Daniela Cedano Giraldo, Derya Mumcu Kucuker","doi":"10.1016/j.funbio.2025.101638","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial prediction of edible fungi is essential for the conservation and sustainable use of non-wood forest products (NWFPs) and contributes to the understanding of fungal biodiversity in forest ecosystems. This study compares multiple species distribution modeling (SDM) techniques to predict the spatial distribution of Lactarius deliciosus (L.) Gray in the Refahiye and Tekçam Forest Planning Units (FPUs) in Türkiye. Using the Biomod2 platform, we implemented five modeling algorithms: generalized linear models (GLM), multivariate adaptive regression splines (MARS), classification tree analysis (CTA), boosted regression trees (BRT), and random forests (RF). Among these, the RF model outperformed the others, demonstrating superior accuracy across all performance metrics, likely due to its ability to handle non-linear relationships, categorical predictor variables, and complex interactions without requiring extensive parameter tuning. The resulting RF-based suitability map provides valuable guidance for sustainable mushroom harvesting, forest management planning, and the conservation of mycological resources.</p>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 6","pages":"101638"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of Biomod2 statistical and machine learning methods for Lactarius deliciosus distribution in Refahiye, Turkiye.\",\"authors\":\"Daniela Cedano Giraldo, Derya Mumcu Kucuker\",\"doi\":\"10.1016/j.funbio.2025.101638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spatial prediction of edible fungi is essential for the conservation and sustainable use of non-wood forest products (NWFPs) and contributes to the understanding of fungal biodiversity in forest ecosystems. This study compares multiple species distribution modeling (SDM) techniques to predict the spatial distribution of Lactarius deliciosus (L.) Gray in the Refahiye and Tekçam Forest Planning Units (FPUs) in Türkiye. Using the Biomod2 platform, we implemented five modeling algorithms: generalized linear models (GLM), multivariate adaptive regression splines (MARS), classification tree analysis (CTA), boosted regression trees (BRT), and random forests (RF). Among these, the RF model outperformed the others, demonstrating superior accuracy across all performance metrics, likely due to its ability to handle non-linear relationships, categorical predictor variables, and complex interactions without requiring extensive parameter tuning. The resulting RF-based suitability map provides valuable guidance for sustainable mushroom harvesting, forest management planning, and the conservation of mycological resources.</p>\",\"PeriodicalId\":12683,\"journal\":{\"name\":\"Fungal biology\",\"volume\":\"129 6\",\"pages\":\"101638\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.funbio.2025.101638\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.funbio.2025.101638","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食用菌的空间预测对非木材林产品的保护和可持续利用具有重要意义,有助于了解森林生态系统真菌的生物多样性。采用多物种分布模型(SDM)预测美味乳牛(Lactarius deliciosus, L.)的空间分布。灰色在Refahiye和tekam森林规划单位(fpu)在缅甸。利用Biomod2平台,我们实现了五种建模算法:广义线性模型(GLM)、多元自适应样条回归(MARS)、分类树分析(CTA)、增强回归树(BRT)和随机森林(RF)。其中,RF模型的表现优于其他模型,在所有性能指标上都表现出卓越的准确性,这可能是由于它能够处理非线性关系、分类预测变量和复杂的相互作用,而不需要大量的参数调整。由此产生的基于rf的适宜性图为蘑菇的可持续收获、森林管理规划和真菌资源保护提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of Biomod2 statistical and machine learning methods for Lactarius deliciosus distribution in Refahiye, Turkiye.

The spatial prediction of edible fungi is essential for the conservation and sustainable use of non-wood forest products (NWFPs) and contributes to the understanding of fungal biodiversity in forest ecosystems. This study compares multiple species distribution modeling (SDM) techniques to predict the spatial distribution of Lactarius deliciosus (L.) Gray in the Refahiye and Tekçam Forest Planning Units (FPUs) in Türkiye. Using the Biomod2 platform, we implemented five modeling algorithms: generalized linear models (GLM), multivariate adaptive regression splines (MARS), classification tree analysis (CTA), boosted regression trees (BRT), and random forests (RF). Among these, the RF model outperformed the others, demonstrating superior accuracy across all performance metrics, likely due to its ability to handle non-linear relationships, categorical predictor variables, and complex interactions without requiring extensive parameter tuning. The resulting RF-based suitability map provides valuable guidance for sustainable mushroom harvesting, forest management planning, and the conservation of mycological resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal biology
Fungal biology MYCOLOGY-
CiteScore
5.80
自引率
4.00%
发文量
80
审稿时长
49 days
期刊介绍: Fungal Biology publishes original contributions in all fields of basic and applied research involving fungi and fungus-like organisms (including oomycetes and slime moulds). Areas of investigation include biodeterioration, biotechnology, cell and developmental biology, ecology, evolution, genetics, geomycology, medical mycology, mutualistic interactions (including lichens and mycorrhizas), physiology, plant pathology, secondary metabolites, and taxonomy and systematics. Submissions on experimental methods are also welcomed. Priority is given to contributions likely to be of interest to a wide international audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信