探索以噻吩为基础的药物载体作为神经退行性疾病的新兴疗法。

IF 5.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Shivank Sharma, Mukta Gupta, Shivani Sharma
{"title":"探索以噻吩为基础的药物载体作为神经退行性疾病的新兴疗法。","authors":"Shivank Sharma, Mukta Gupta, Shivani Sharma","doi":"10.1080/10408347.2025.2554239","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment. In the face of symptomatic therapies, disease-modifying treatments are beyond reach, for many years, at least, owing to the multifactorial origin, including protein aggregation, oxidative stress, neuroinflammation, and neurotransmitter dysregulation. Here, we point out thiophene, a five-membered heterocyclic sulfur-containing scaffold, as an underinvestigated but highly versatile pharmacophore with great potential in therapeutics of NDD. Here, we provide a systematic review of thiophene derivatives identified between 2006 and 2024, highlighting that these compounds are capable of modulating the aggregation of amyloid-β, inhibiting acetylcholinesterase, alleviating oxidative stress, inhibiting the toxicity of α-synuclein, and restoring neurotransmitter homeostasis. Specific emphasis is placed on their structural malleability, blood-brain barrier penetrability, and multi-targeting, which collectively present advantages over traditional heterocyclic templates. Progress in the areas of structure-activity relationship (SAR)-motivated design, synthetic methods, molecular docking, and preclinical assessment is reviewed, leading to the establishment of lead thiophene scaffolds with micro or nanomolar-range activity. This review also provides future directions, such as the requirement of pharmacokinetic improvement, target verification, and translational research to bridge preclinical discoveries with clinical utility. This article collectively places thiophene derivatives as an innovative chemical platform for the design of next-generation drugs for neurodegenerative diseases.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-29"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Thiophene-Based Pharmacophores as Emerging Therapeutics for Neurodegenerative Disorders.\",\"authors\":\"Shivank Sharma, Mukta Gupta, Shivani Sharma\",\"doi\":\"10.1080/10408347.2025.2554239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment. In the face of symptomatic therapies, disease-modifying treatments are beyond reach, for many years, at least, owing to the multifactorial origin, including protein aggregation, oxidative stress, neuroinflammation, and neurotransmitter dysregulation. Here, we point out thiophene, a five-membered heterocyclic sulfur-containing scaffold, as an underinvestigated but highly versatile pharmacophore with great potential in therapeutics of NDD. Here, we provide a systematic review of thiophene derivatives identified between 2006 and 2024, highlighting that these compounds are capable of modulating the aggregation of amyloid-β, inhibiting acetylcholinesterase, alleviating oxidative stress, inhibiting the toxicity of α-synuclein, and restoring neurotransmitter homeostasis. Specific emphasis is placed on their structural malleability, blood-brain barrier penetrability, and multi-targeting, which collectively present advantages over traditional heterocyclic templates. Progress in the areas of structure-activity relationship (SAR)-motivated design, synthetic methods, molecular docking, and preclinical assessment is reviewed, leading to the establishment of lead thiophene scaffolds with micro or nanomolar-range activity. This review also provides future directions, such as the requirement of pharmacokinetic improvement, target verification, and translational research to bridge preclinical discoveries with clinical utility. This article collectively places thiophene derivatives as an innovative chemical platform for the design of next-generation drugs for neurodegenerative diseases.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":\" \",\"pages\":\"1-29\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2025.2554239\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2025.2554239","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病(NDD),即阿尔茨海默氏型痴呆、帕金森氏病、亨廷顿氏病和肌萎缩性侧索硬化症是由人口老龄化驱动并以进行性神经元损伤为特征的全球流行病。面对对症治疗,至少多年来,由于多因素的起源,包括蛋白质聚集、氧化应激、神经炎症和神经递质失调,疾病改善治疗是遥不可及的。在这里,我们指出噻吩,一种五元杂环含硫支架,作为一种未被充分研究但高度通用的药效团,在治疗NDD方面具有巨大的潜力。在此,我们对2006年至2024年间发现的噻吩衍生物进行了系统回顾,强调这些化合物能够调节淀粉样蛋白-β的聚集,抑制乙酰胆碱酯酶,减轻氧化应激,抑制α-突触核蛋白的毒性,并恢复神经递质稳态。特别强调的是它们的结构延展性、血脑屏障穿透性和多靶向性,这些都比传统的杂环模板有优势。综述了基于构效关系(SAR)的设计、合成方法、分子对接和临床前评估等方面的进展,从而建立了具有微或纳米级活性的噻吩铅支架。本文还提出了未来的发展方向,如药代动力学改进、靶点验证和转化研究,以将临床前发现与临床应用联系起来。本文将噻吩衍生物作为设计下一代神经退行性疾病药物的创新化学平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Thiophene-Based Pharmacophores as Emerging Therapeutics for Neurodegenerative Disorders.

Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment. In the face of symptomatic therapies, disease-modifying treatments are beyond reach, for many years, at least, owing to the multifactorial origin, including protein aggregation, oxidative stress, neuroinflammation, and neurotransmitter dysregulation. Here, we point out thiophene, a five-membered heterocyclic sulfur-containing scaffold, as an underinvestigated but highly versatile pharmacophore with great potential in therapeutics of NDD. Here, we provide a systematic review of thiophene derivatives identified between 2006 and 2024, highlighting that these compounds are capable of modulating the aggregation of amyloid-β, inhibiting acetylcholinesterase, alleviating oxidative stress, inhibiting the toxicity of α-synuclein, and restoring neurotransmitter homeostasis. Specific emphasis is placed on their structural malleability, blood-brain barrier penetrability, and multi-targeting, which collectively present advantages over traditional heterocyclic templates. Progress in the areas of structure-activity relationship (SAR)-motivated design, synthetic methods, molecular docking, and preclinical assessment is reviewed, leading to the establishment of lead thiophene scaffolds with micro or nanomolar-range activity. This review also provides future directions, such as the requirement of pharmacokinetic improvement, target verification, and translational research to bridge preclinical discoveries with clinical utility. This article collectively places thiophene derivatives as an innovative chemical platform for the design of next-generation drugs for neurodegenerative diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
4.00%
发文量
137
审稿时长
6 months
期刊介绍: Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area. This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following: · chemical analysis; · instrumentation; · chemometrics; · analytical biochemistry; · medicinal analysis; · forensics; · environmental sciences; · applied physics; · and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信