{"title":"抗淀粉样蛋白单克隆抗体中ARIA-H风险的结构和功能决定因素:阿尔茨海默病免疫治疗发展的比较机制框架。","authors":"Dinghao An, Xinxin Zou, Yun Xu","doi":"10.2174/011570159X391766250806091602","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Amyloid-beta-targeting monoclonal antibodies (mAbs) for Alzheimer's disease frequently induce amyloid-related imaging abnormalities with hemorrhage (ARIA-H), yet systematic comparisons of ARIA-H incidence across therapeutic agents remain limited. Post-approval research prioritizes dosing over mechanism, leaving unresolved whether ARIA-H variations originate from intrinsic mAb properties. We address two gaps: comparative ARIA-H risk stratification among clinically available/investigational mAbs, and elucidation of structural/functional features influencing ARIA-H susceptibility.</p><p><strong>Methods: </strong>A systematic comparison of seven mAbs (donanemab, aducanumab, bapineuzumab, lecanemab, gantenerumab, crenezumab, solanezumab) was conducted, analyzing clinical trial data and molecular characteristics.</p><p><strong>Results: </strong>ARIA-H incidence ranked as follows (highest to lowest): donanemab > aducanumab > bapineuzumab > lecanemab > gantenerumab > crenezumab > solanezumab. Five mAb-specific determinants emerged: (1) Types of Aβ Binding: Enhanced clearance of mature amyloid plaques correlated with elevated ARIA-H risk. (2) Polymer binding Affinity: Reduced small oligomer-binding capacity predicted higher ARIA-H incidence. (3) Epitope location: N-terminal-targeting mAbs showed greater ARIA-H incidence vs. mid/C-terminal binders. (4) Fc region structure: IgG4-based constructs showed higher ARIA-H incidence than IgG1 analogs. (5) Clearance kinetics: Rapid attainment of amyloid reduction thresholds amplified ARIA-H incidence.</p><p><strong>Discussion: </strong>We identify a risk hierarchy for ARIA-H among anti-Aβ mAbs and link specific mAb biophysical properties-Aβ binding type, affinity for soluble oligomers, epitope specificity, Fc structure, and plaque clearance dynamics-directly to ARIA-H pathogenesis.</p><p><strong>Conclusion: </strong>These findings establish a mechanistic framework for ARIA-H risk and provide concrete molecular predictors to guide antibody engineering strategies. Prioritizing mAbs with controlled amyloid clearance, C-terminal binding domains, and IgG1 frameworks may enhance therapeutic safety, advancing precision immunotherapy for Alzheimer's disease.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and Functional Determinants of ARIA-H Risk in Anti-Amyloid Monoclonal Antibodies: A Comparative Mechanistic Framework for Alzheimer's Immunotherapy Development.\",\"authors\":\"Dinghao An, Xinxin Zou, Yun Xu\",\"doi\":\"10.2174/011570159X391766250806091602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Amyloid-beta-targeting monoclonal antibodies (mAbs) for Alzheimer's disease frequently induce amyloid-related imaging abnormalities with hemorrhage (ARIA-H), yet systematic comparisons of ARIA-H incidence across therapeutic agents remain limited. Post-approval research prioritizes dosing over mechanism, leaving unresolved whether ARIA-H variations originate from intrinsic mAb properties. We address two gaps: comparative ARIA-H risk stratification among clinically available/investigational mAbs, and elucidation of structural/functional features influencing ARIA-H susceptibility.</p><p><strong>Methods: </strong>A systematic comparison of seven mAbs (donanemab, aducanumab, bapineuzumab, lecanemab, gantenerumab, crenezumab, solanezumab) was conducted, analyzing clinical trial data and molecular characteristics.</p><p><strong>Results: </strong>ARIA-H incidence ranked as follows (highest to lowest): donanemab > aducanumab > bapineuzumab > lecanemab > gantenerumab > crenezumab > solanezumab. Five mAb-specific determinants emerged: (1) Types of Aβ Binding: Enhanced clearance of mature amyloid plaques correlated with elevated ARIA-H risk. (2) Polymer binding Affinity: Reduced small oligomer-binding capacity predicted higher ARIA-H incidence. (3) Epitope location: N-terminal-targeting mAbs showed greater ARIA-H incidence vs. mid/C-terminal binders. (4) Fc region structure: IgG4-based constructs showed higher ARIA-H incidence than IgG1 analogs. (5) Clearance kinetics: Rapid attainment of amyloid reduction thresholds amplified ARIA-H incidence.</p><p><strong>Discussion: </strong>We identify a risk hierarchy for ARIA-H among anti-Aβ mAbs and link specific mAb biophysical properties-Aβ binding type, affinity for soluble oligomers, epitope specificity, Fc structure, and plaque clearance dynamics-directly to ARIA-H pathogenesis.</p><p><strong>Conclusion: </strong>These findings establish a mechanistic framework for ARIA-H risk and provide concrete molecular predictors to guide antibody engineering strategies. Prioritizing mAbs with controlled amyloid clearance, C-terminal binding domains, and IgG1 frameworks may enhance therapeutic safety, advancing precision immunotherapy for Alzheimer's disease.</p>\",\"PeriodicalId\":10905,\"journal\":{\"name\":\"Current Neuropharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/011570159X391766250806091602\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570159X391766250806091602","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Structural and Functional Determinants of ARIA-H Risk in Anti-Amyloid Monoclonal Antibodies: A Comparative Mechanistic Framework for Alzheimer's Immunotherapy Development.
Introduction: Amyloid-beta-targeting monoclonal antibodies (mAbs) for Alzheimer's disease frequently induce amyloid-related imaging abnormalities with hemorrhage (ARIA-H), yet systematic comparisons of ARIA-H incidence across therapeutic agents remain limited. Post-approval research prioritizes dosing over mechanism, leaving unresolved whether ARIA-H variations originate from intrinsic mAb properties. We address two gaps: comparative ARIA-H risk stratification among clinically available/investigational mAbs, and elucidation of structural/functional features influencing ARIA-H susceptibility.
Methods: A systematic comparison of seven mAbs (donanemab, aducanumab, bapineuzumab, lecanemab, gantenerumab, crenezumab, solanezumab) was conducted, analyzing clinical trial data and molecular characteristics.
Results: ARIA-H incidence ranked as follows (highest to lowest): donanemab > aducanumab > bapineuzumab > lecanemab > gantenerumab > crenezumab > solanezumab. Five mAb-specific determinants emerged: (1) Types of Aβ Binding: Enhanced clearance of mature amyloid plaques correlated with elevated ARIA-H risk. (2) Polymer binding Affinity: Reduced small oligomer-binding capacity predicted higher ARIA-H incidence. (3) Epitope location: N-terminal-targeting mAbs showed greater ARIA-H incidence vs. mid/C-terminal binders. (4) Fc region structure: IgG4-based constructs showed higher ARIA-H incidence than IgG1 analogs. (5) Clearance kinetics: Rapid attainment of amyloid reduction thresholds amplified ARIA-H incidence.
Discussion: We identify a risk hierarchy for ARIA-H among anti-Aβ mAbs and link specific mAb biophysical properties-Aβ binding type, affinity for soluble oligomers, epitope specificity, Fc structure, and plaque clearance dynamics-directly to ARIA-H pathogenesis.
Conclusion: These findings establish a mechanistic framework for ARIA-H risk and provide concrete molecular predictors to guide antibody engineering strategies. Prioritizing mAbs with controlled amyloid clearance, C-terminal binding domains, and IgG1 frameworks may enhance therapeutic safety, advancing precision immunotherapy for Alzheimer's disease.
期刊介绍:
Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience.
The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.