胰蛋白酶与赖氨酸-α-氧化酶共固定化测定酪蛋白水解产物中赖氨酸含量。生物传感器评价。

IF 2 Q3 CELL BIOLOGY
Christian M Villavicencio Yanos, María Janina Cedeño Vivas, Grether Lucía Real Pérez, José Patricio Muñoz Murillo, Shirley Bethzabe Guamán, Ginger Jamileth Santana Moreira, Sara María Cantos, Vinicio Francisco Bolaños de la Torre, Rosa Mariuxi Litardo Velásquez, Felipe Jadán Piedra
{"title":"胰蛋白酶与赖氨酸-α-氧化酶共固定化测定酪蛋白水解产物中赖氨酸含量。生物传感器评价。","authors":"Christian M Villavicencio Yanos, María Janina Cedeño Vivas, Grether Lucía Real Pérez, José Patricio Muñoz Murillo, Shirley Bethzabe Guamán, Ginger Jamileth Santana Moreira, Sara María Cantos, Vinicio Francisco Bolaños de la Torre, Rosa Mariuxi Litardo Velásquez, Felipe Jadán Piedra","doi":"10.33594/000000803","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>The quantification of amino acids in the dairy industry is necessary for quality control and for the formulation of functional foods. Thus, the development of enzymatic biosensors requires a detailed study of enzyme kinetics. Parameters such as KM and Vmax are necessary to optimize the sensitivity and specificity of the biosensor.</p><p><strong>Methods: </strong>The enzyme immobilized on nylon and yucca bipolymer membranes was studied to evaluate possible interferences in the amperometric sensor.</p><p><strong>Results: </strong>The sensor developed based on enzyme kinetics proved to be a reliable, sensitive, and low-cost alternative for determining lysine in dairy products. Its performance, comparable to HPLC, together with its low environmental impact, positions it as a useful tool for quality control in the food industry.</p><p><strong>Conclusion: </strong>An enzymatic biosensor capable of quickly, accurately, and economically quantifying lysine in casein hydrolysates was developed. Its high sensitivity, enzymatic stability, and low environmental impact make it a viable and comparable alternative to HPLC for quality control in dairy products.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 4","pages":"540-551"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Immobilization of Trypsin and Lysine -α- Oxidase For the Quantification of Lysine in Casein Hydrolysate. Evaluation with a Biosensor.\",\"authors\":\"Christian M Villavicencio Yanos, María Janina Cedeño Vivas, Grether Lucía Real Pérez, José Patricio Muñoz Murillo, Shirley Bethzabe Guamán, Ginger Jamileth Santana Moreira, Sara María Cantos, Vinicio Francisco Bolaños de la Torre, Rosa Mariuxi Litardo Velásquez, Felipe Jadán Piedra\",\"doi\":\"10.33594/000000803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>The quantification of amino acids in the dairy industry is necessary for quality control and for the formulation of functional foods. Thus, the development of enzymatic biosensors requires a detailed study of enzyme kinetics. Parameters such as KM and Vmax are necessary to optimize the sensitivity and specificity of the biosensor.</p><p><strong>Methods: </strong>The enzyme immobilized on nylon and yucca bipolymer membranes was studied to evaluate possible interferences in the amperometric sensor.</p><p><strong>Results: </strong>The sensor developed based on enzyme kinetics proved to be a reliable, sensitive, and low-cost alternative for determining lysine in dairy products. Its performance, comparable to HPLC, together with its low environmental impact, positions it as a useful tool for quality control in the food industry.</p><p><strong>Conclusion: </strong>An enzymatic biosensor capable of quickly, accurately, and economically quantifying lysine in casein hydrolysates was developed. Its high sensitivity, enzymatic stability, and low environmental impact make it a viable and comparable alternative to HPLC for quality control in dairy products.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":\"59 4\",\"pages\":\"540-551\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:乳制品中氨基酸的定量分析是质量控制和功能食品配方的必要条件。因此,开发酶生物传感器需要对酶动力学进行详细的研究。KM和Vmax等参数对于优化生物传感器的灵敏度和特异性是必要的。方法:将酶固定在尼龙和丝兰双聚合物膜上,研究其对安培传感器可能产生的干扰。结果:基于酶动力学的传感器是一种可靠、灵敏、低成本的乳制品赖氨酸检测方法。其性能可与HPLC相媲美,且对环境影响小,使其成为食品行业质量控制的有用工具。结论:开发了一种快速、准确、经济地定量酪蛋白水解物中赖氨酸的酶促生物传感器。其高灵敏度,酶稳定性和低环境影响使其成为乳制品质量控制的可行和可比的HPLC替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-Immobilization of Trypsin and Lysine -α- Oxidase For the Quantification of Lysine in Casein Hydrolysate. Evaluation with a Biosensor.

Background/aims: The quantification of amino acids in the dairy industry is necessary for quality control and for the formulation of functional foods. Thus, the development of enzymatic biosensors requires a detailed study of enzyme kinetics. Parameters such as KM and Vmax are necessary to optimize the sensitivity and specificity of the biosensor.

Methods: The enzyme immobilized on nylon and yucca bipolymer membranes was studied to evaluate possible interferences in the amperometric sensor.

Results: The sensor developed based on enzyme kinetics proved to be a reliable, sensitive, and low-cost alternative for determining lysine in dairy products. Its performance, comparable to HPLC, together with its low environmental impact, positions it as a useful tool for quality control in the food industry.

Conclusion: An enzymatic biosensor capable of quickly, accurately, and economically quantifying lysine in casein hydrolysates was developed. Its high sensitivity, enzymatic stability, and low environmental impact make it a viable and comparable alternative to HPLC for quality control in dairy products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
86
审稿时长
1 months
期刊介绍: Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信