基于DNA折纸模板的金纳米颗粒酶促各向异性生长。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuanyuan Luo, Liqiong Niu, Pengyan Hao, Xiaoya Sun, Di Lu, Na Wu
{"title":"基于DNA折纸模板的金纳米颗粒酶促各向异性生长。","authors":"Yuanyuan Luo, Liqiong Niu, Pengyan Hao, Xiaoya Sun, Di Lu, Na Wu","doi":"10.1002/smtd.202501092","DOIUrl":null,"url":null,"abstract":"<p><p>Anisotropic gold nanoparticles (AuNPs) exhibit unique physicochemical properties that render them highly valuable for diverse applications. However, precise control over their growth direction and number of branches is challenging with conventional synthesis methods. A DNA origami-templated enzymatic synthesis strategy addresses this limitation. By spatially programming the arrangement of glucose oxidase (GOx) and gold nanoparticle seeds, localized high-concentration microenvironments of gold atoms are engineered on the seed surface. This design ensures that the deposition rate (V<sub>dep</sub>) of Au<sup>0</sup> in targeted regions surpasses the diffusion rate (V<sub>diff</sub>), directing the growth process via a \"hit-and-stick\" mechanism and enabling site-selective gold deposition. Systematic modulation of the relative positions of GOx and gold nanoparticle seeds enables controlled synthesis of anisotropic gold nanostructures with tunable growth angles and number of branches. This study not only provides a novel approach for the precision fabrication of anisotropic metallic nanomaterials but also highlights the unique advantages of DNA nanotechnology in advanced nanomanufacturing.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01092"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymatic Anisotropic Growth of Gold Nanoparticles Based on DNA Origami Templates.\",\"authors\":\"Yuanyuan Luo, Liqiong Niu, Pengyan Hao, Xiaoya Sun, Di Lu, Na Wu\",\"doi\":\"10.1002/smtd.202501092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anisotropic gold nanoparticles (AuNPs) exhibit unique physicochemical properties that render them highly valuable for diverse applications. However, precise control over their growth direction and number of branches is challenging with conventional synthesis methods. A DNA origami-templated enzymatic synthesis strategy addresses this limitation. By spatially programming the arrangement of glucose oxidase (GOx) and gold nanoparticle seeds, localized high-concentration microenvironments of gold atoms are engineered on the seed surface. This design ensures that the deposition rate (V<sub>dep</sub>) of Au<sup>0</sup> in targeted regions surpasses the diffusion rate (V<sub>diff</sub>), directing the growth process via a \\\"hit-and-stick\\\" mechanism and enabling site-selective gold deposition. Systematic modulation of the relative positions of GOx and gold nanoparticle seeds enables controlled synthesis of anisotropic gold nanostructures with tunable growth angles and number of branches. This study not only provides a novel approach for the precision fabrication of anisotropic metallic nanomaterials but also highlights the unique advantages of DNA nanotechnology in advanced nanomanufacturing.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01092\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501092\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501092","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

各向异性金纳米颗粒(AuNPs)表现出独特的物理化学性质,使其在各种应用中具有很高的价值。然而,传统的合成方法很难精确控制它们的生长方向和分支数量。DNA折纸模板酶合成策略解决了这一限制。通过对葡萄糖氧化酶(GOx)和金纳米粒子种子的空间排列进行编程,在种子表面设计了局部高浓度金原子微环境。该设计确保了目标区域中Au0的沉积速率(Vdep)超过扩散速率(Vdiff),通过“打-棒”机制指导生长过程,并实现了位置选择性金沉积。系统地调节氧化石墨烯和金纳米粒子种子的相对位置,可以控制合成具有可调节生长角度和分支数量的各向异性金纳米结构。本研究不仅为各向异性金属纳米材料的精密制造提供了新的途径,而且突出了DNA纳米技术在先进纳米制造中的独特优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enzymatic Anisotropic Growth of Gold Nanoparticles Based on DNA Origami Templates.

Anisotropic gold nanoparticles (AuNPs) exhibit unique physicochemical properties that render them highly valuable for diverse applications. However, precise control over their growth direction and number of branches is challenging with conventional synthesis methods. A DNA origami-templated enzymatic synthesis strategy addresses this limitation. By spatially programming the arrangement of glucose oxidase (GOx) and gold nanoparticle seeds, localized high-concentration microenvironments of gold atoms are engineered on the seed surface. This design ensures that the deposition rate (Vdep) of Au0 in targeted regions surpasses the diffusion rate (Vdiff), directing the growth process via a "hit-and-stick" mechanism and enabling site-selective gold deposition. Systematic modulation of the relative positions of GOx and gold nanoparticle seeds enables controlled synthesis of anisotropic gold nanostructures with tunable growth angles and number of branches. This study not only provides a novel approach for the precision fabrication of anisotropic metallic nanomaterials but also highlights the unique advantages of DNA nanotechnology in advanced nanomanufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信