{"title":"镜面纳米粒子腔中双光子分子发射器的设计。","authors":"S Smeets, B Maes, G Rosolen, C Van Dyck","doi":"10.1039/d5nh00498e","DOIUrl":null,"url":null,"abstract":"<p><p>Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway. To overcome the inherently low TPSE rates in vacuum, we propose plasmonic nanoparticle-on-mirror cavities, engineered for degenerate TPSE. Our simulations reveal over 10 orders of magnitude enhancement and radiative efficiencies exceeding 50%. Notably, for nitro-substituted phenylene vinylene in an optimized nanocone-on-mirror structure, the two-photon emission rate surpasses that of vacuum one-photon emission from a unit dipole. These findings open new avenues for efficient and molecular-based on-demand sources of entangled photon pairs.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing two-photon molecular emitters in nanoparticle-on-mirror cavities.\",\"authors\":\"S Smeets, B Maes, G Rosolen, C Van Dyck\",\"doi\":\"10.1039/d5nh00498e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway. To overcome the inherently low TPSE rates in vacuum, we propose plasmonic nanoparticle-on-mirror cavities, engineered for degenerate TPSE. Our simulations reveal over 10 orders of magnitude enhancement and radiative efficiencies exceeding 50%. Notably, for nitro-substituted phenylene vinylene in an optimized nanocone-on-mirror structure, the two-photon emission rate surpasses that of vacuum one-photon emission from a unit dipole. These findings open new avenues for efficient and molecular-based on-demand sources of entangled photon pairs.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00498e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00498e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Designing two-photon molecular emitters in nanoparticle-on-mirror cavities.
Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway. To overcome the inherently low TPSE rates in vacuum, we propose plasmonic nanoparticle-on-mirror cavities, engineered for degenerate TPSE. Our simulations reveal over 10 orders of magnitude enhancement and radiative efficiencies exceeding 50%. Notably, for nitro-substituted phenylene vinylene in an optimized nanocone-on-mirror structure, the two-photon emission rate surpasses that of vacuum one-photon emission from a unit dipole. These findings open new avenues for efficient and molecular-based on-demand sources of entangled photon pairs.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.