镜面纳米粒子腔中双光子分子发射器的设计。

IF 6.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
S Smeets, B Maes, G Rosolen, C Van Dyck
{"title":"镜面纳米粒子腔中双光子分子发射器的设计。","authors":"S Smeets, B Maes, G Rosolen, C Van Dyck","doi":"10.1039/d5nh00498e","DOIUrl":null,"url":null,"abstract":"<p><p>Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway. To overcome the inherently low TPSE rates in vacuum, we propose plasmonic nanoparticle-on-mirror cavities, engineered for degenerate TPSE. Our simulations reveal over 10 orders of magnitude enhancement and radiative efficiencies exceeding 50%. Notably, for nitro-substituted phenylene vinylene in an optimized nanocone-on-mirror structure, the two-photon emission rate surpasses that of vacuum one-photon emission from a unit dipole. These findings open new avenues for efficient and molecular-based on-demand sources of entangled photon pairs.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing two-photon molecular emitters in nanoparticle-on-mirror cavities.\",\"authors\":\"S Smeets, B Maes, G Rosolen, C Van Dyck\",\"doi\":\"10.1039/d5nh00498e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway. To overcome the inherently low TPSE rates in vacuum, we propose plasmonic nanoparticle-on-mirror cavities, engineered for degenerate TPSE. Our simulations reveal over 10 orders of magnitude enhancement and radiative efficiencies exceeding 50%. Notably, for nitro-substituted phenylene vinylene in an optimized nanocone-on-mirror structure, the two-photon emission rate surpasses that of vacuum one-photon emission from a unit dipole. These findings open new avenues for efficient and molecular-based on-demand sources of entangled photon pairs.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00498e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00498e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

双光子自发发射(TPSE)是一种二阶量子过程,在量子光学中具有很好的应用前景,但在分子系统中仍未被充分开发,因为分子系统通常是非常低效的发射体。在这项工作中,我们模拟了第一个分子双光子发射器并建立了设计规则,强调了它们与控制双光子吸收器的区别。利用时间依赖密度泛函理论和pariser - parr - people计算,我们计算了三个π共轭分子的TPSE,并确定了一个优势途径。为了克服真空中固有的低TPSE率,我们提出了用于简并型TPSE的等离子体纳米粒子-镜面腔。我们的模拟显示,辐射效率提高了10个数量级,辐射效率超过50%。值得注意的是,在优化的纳米锥-镜结构中,硝基取代的苯基乙烯基的双光子发射率超过了单位偶极子的真空单光子发射率。这些发现为高效和基于分子的按需纠缠光子对源开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing two-photon molecular emitters in nanoparticle-on-mirror cavities.

Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway. To overcome the inherently low TPSE rates in vacuum, we propose plasmonic nanoparticle-on-mirror cavities, engineered for degenerate TPSE. Our simulations reveal over 10 orders of magnitude enhancement and radiative efficiencies exceeding 50%. Notably, for nitro-substituted phenylene vinylene in an optimized nanocone-on-mirror structure, the two-photon emission rate surpasses that of vacuum one-photon emission from a unit dipole. These findings open new avenues for efficient and molecular-based on-demand sources of entangled photon pairs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信