用BiOCl纳米板糖酵解聚对苯二甲酸乙二醇酯:表面羟基、面和路易斯酸位点的协同作用。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-08 DOI:10.1002/cssc.202501196
Million M Habtegbrel, Swadhin Kumar Jena, Rajesh Kumar, Rithesh Kumar Patil, Prem Felix Siril
{"title":"用BiOCl纳米板糖酵解聚对苯二甲酸乙二醇酯:表面羟基、面和路易斯酸位点的协同作用。","authors":"Million M Habtegbrel, Swadhin Kumar Jena, Rajesh Kumar, Rithesh Kumar Patil, Prem Felix Siril","doi":"10.1002/cssc.202501196","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulation of waste plastics on the earth's surface is a global challenge. There is a possibility of turning this challenge into an opportunity by plastic upcycling. In this work, the potential of bismuth oxychloride (BiOCl) as a heterogeneous catalyst for the glycolysis of polyethylene terephthalate (PET) is reported. Among the catalysts prepared, Bi-Co nanoplates showed the highest PET conversion and bis(2-hydroxyethyl) terephthalate (BHET) yield. Main reasons for the enhanced catalytic activity are the presence of more surface hydroxyl groups, exposed 001 crystal facets, and abundant Lewis acidic sites (Bi<sup>3+</sup>). Further, the Response Surface Methodology (RSM) was used to assess the effectiveness of the synthesized catalyst. The regression model developed shows that the PET conversion and BHET yield are significantly affected by the amount of ethylene glycol, the reaction time, the reaction temperature, and the amount of catalyst. The BHET yield reaches 70.25% using Bi-Co catalyst under optimal conditions. The fundamental glycolysis mechanism and elements governing product selectivity toward BHET are established. A techno-economic analysis showed that BiOCl nanoplates are the ideal candidates for the large-scale glycolysis of PET. This work presents the immense potential of BiOX for thermal catalytic processes.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2501196"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycolysis of Polyethylene Terephthalate by BiOCl Nanoplates: Synergy of Surface Hydroxy Groups, Facets, and Lewis Acid Sites.\",\"authors\":\"Million M Habtegbrel, Swadhin Kumar Jena, Rajesh Kumar, Rithesh Kumar Patil, Prem Felix Siril\",\"doi\":\"10.1002/cssc.202501196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accumulation of waste plastics on the earth's surface is a global challenge. There is a possibility of turning this challenge into an opportunity by plastic upcycling. In this work, the potential of bismuth oxychloride (BiOCl) as a heterogeneous catalyst for the glycolysis of polyethylene terephthalate (PET) is reported. Among the catalysts prepared, Bi-Co nanoplates showed the highest PET conversion and bis(2-hydroxyethyl) terephthalate (BHET) yield. Main reasons for the enhanced catalytic activity are the presence of more surface hydroxyl groups, exposed 001 crystal facets, and abundant Lewis acidic sites (Bi<sup>3+</sup>). Further, the Response Surface Methodology (RSM) was used to assess the effectiveness of the synthesized catalyst. The regression model developed shows that the PET conversion and BHET yield are significantly affected by the amount of ethylene glycol, the reaction time, the reaction temperature, and the amount of catalyst. The BHET yield reaches 70.25% using Bi-Co catalyst under optimal conditions. The fundamental glycolysis mechanism and elements governing product selectivity toward BHET are established. A techno-economic analysis showed that BiOCl nanoplates are the ideal candidates for the large-scale glycolysis of PET. This work presents the immense potential of BiOX for thermal catalytic processes.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2501196\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501196\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501196","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

废塑料在地球表面的堆积是一个全球性的挑战。通过塑料升级回收,有可能将这一挑战转化为机遇。本文报道了氧化氯化铋(BiOCl)作为聚对苯二甲酸乙二醇酯(PET)糖酵解的异相催化剂的潜力。在所制备的催化剂中,Bi-Co纳米板的PET转化率和对苯二甲酸(2-羟乙基)酯(BHET)收率最高。催化活性增强的主要原因是表面羟基的增加、暴露的001晶面和丰富的Lewis酸位(Bi3+)。利用响应面法(RSM)对合成的催化剂进行了性能评价。建立的回归模型表明,乙二醇用量、反应时间、反应温度和催化剂用量对PET转化率和BHET收率有显著影响。在最佳条件下,用Bi-Co催化剂制备的BHET收率达到70.25%。建立了糖酵解的基本机制和控制产物选择性的因素。技术经济分析表明,BiOCl纳米板是PET大规模糖酵解的理想候选材料。这项工作展示了BiOX在热催化过程中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glycolysis of Polyethylene Terephthalate by BiOCl Nanoplates: Synergy of Surface Hydroxy Groups, Facets, and Lewis Acid Sites.

Accumulation of waste plastics on the earth's surface is a global challenge. There is a possibility of turning this challenge into an opportunity by plastic upcycling. In this work, the potential of bismuth oxychloride (BiOCl) as a heterogeneous catalyst for the glycolysis of polyethylene terephthalate (PET) is reported. Among the catalysts prepared, Bi-Co nanoplates showed the highest PET conversion and bis(2-hydroxyethyl) terephthalate (BHET) yield. Main reasons for the enhanced catalytic activity are the presence of more surface hydroxyl groups, exposed 001 crystal facets, and abundant Lewis acidic sites (Bi3+). Further, the Response Surface Methodology (RSM) was used to assess the effectiveness of the synthesized catalyst. The regression model developed shows that the PET conversion and BHET yield are significantly affected by the amount of ethylene glycol, the reaction time, the reaction temperature, and the amount of catalyst. The BHET yield reaches 70.25% using Bi-Co catalyst under optimal conditions. The fundamental glycolysis mechanism and elements governing product selectivity toward BHET are established. A techno-economic analysis showed that BiOCl nanoplates are the ideal candidates for the large-scale glycolysis of PET. This work presents the immense potential of BiOX for thermal catalytic processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信