用大型语言模型探索遗体捐赠交流:准确性、可读性和伦理考虑。

IF 4.7 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Fulya Temizsoy Korkmaz, Fatma Ok, Burak Karip, Papatya Keleş
{"title":"用大型语言模型探索遗体捐赠交流:准确性、可读性和伦理考虑。","authors":"Fulya Temizsoy Korkmaz, Fatma Ok, Burak Karip, Papatya Keleş","doi":"10.1002/ase.70120","DOIUrl":null,"url":null,"abstract":"<p><p>Educational materials advocating whole-body donation must be accurate, easy to read, and transparent, as one potential solution to the fact that the supply of donations is not keeping pace with educational demand, thereby disrupting anatomy education programs. The use of AI technologies to supplement communications with prospective donors and next of kin deserves investigation to determine whether LLM-based approaches meet the common requirements for effective communication. This study contributes to the limited literature on LLM-supported communications by presenting a comparative quantitative benchmark and an adaptable evaluation framework. Five LLMs (ChatGPT-4o, Grok3.0, Claude4Sonnet, Gemini2.5 Flash, DeepSeekR1) were used to generate responses to six frequently asked questions about body donation in Turkish. Four anatomists evaluated accuracy, quality, readability, and vocabulary diversity. Differences between models were statistically analyzed. The two top-performing models, ChatGPT-4o and Grok3.0, achieved mean quality scores of 21.7 ± 2.8 and 21.0 ± 5.1 on a 25-point checklist, and 4.58 ± 0.88 and 4.25 ± 1.03 on a 5-point global quality scale, significantly outperforming the remaining three systems (p < 0.037). Both maintained a below-secondary-school level on two validated readability indices (scores ≥67.8 and ≥40.2). LLM-produced body donation materials (e.g., informational texts and FAQs) may help promote the importance of whole-body donations by providing accessible and reliable information, potentially streamlining the creation of first drafts and reducing staff workload. Given the sensitivity of donation decisions, ethical transparency, cultural sensitivity, and continuous human oversight are essential safeguards. Therefore, LLM use for such purposes should be governed by clear governance frameworks, regular expert audits, and publicly disclosed quality metrics.</p>","PeriodicalId":124,"journal":{"name":"Anatomical Sciences Education","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring body donation communication with large language models: Accuracy, readability, and ethical considerations.\",\"authors\":\"Fulya Temizsoy Korkmaz, Fatma Ok, Burak Karip, Papatya Keleş\",\"doi\":\"10.1002/ase.70120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Educational materials advocating whole-body donation must be accurate, easy to read, and transparent, as one potential solution to the fact that the supply of donations is not keeping pace with educational demand, thereby disrupting anatomy education programs. The use of AI technologies to supplement communications with prospective donors and next of kin deserves investigation to determine whether LLM-based approaches meet the common requirements for effective communication. This study contributes to the limited literature on LLM-supported communications by presenting a comparative quantitative benchmark and an adaptable evaluation framework. Five LLMs (ChatGPT-4o, Grok3.0, Claude4Sonnet, Gemini2.5 Flash, DeepSeekR1) were used to generate responses to six frequently asked questions about body donation in Turkish. Four anatomists evaluated accuracy, quality, readability, and vocabulary diversity. Differences between models were statistically analyzed. The two top-performing models, ChatGPT-4o and Grok3.0, achieved mean quality scores of 21.7 ± 2.8 and 21.0 ± 5.1 on a 25-point checklist, and 4.58 ± 0.88 and 4.25 ± 1.03 on a 5-point global quality scale, significantly outperforming the remaining three systems (p < 0.037). Both maintained a below-secondary-school level on two validated readability indices (scores ≥67.8 and ≥40.2). LLM-produced body donation materials (e.g., informational texts and FAQs) may help promote the importance of whole-body donations by providing accessible and reliable information, potentially streamlining the creation of first drafts and reducing staff workload. Given the sensitivity of donation decisions, ethical transparency, cultural sensitivity, and continuous human oversight are essential safeguards. Therefore, LLM use for such purposes should be governed by clear governance frameworks, regular expert audits, and publicly disclosed quality metrics.</p>\",\"PeriodicalId\":124,\"journal\":{\"name\":\"Anatomical Sciences Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Sciences Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1002/ase.70120\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Sciences Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/ase.70120","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

倡导全身捐赠的教育材料必须准确、易于阅读和透明,这是解决捐赠供应跟不上教育需求从而扰乱解剖学教育计划的一个潜在解决方案。使用人工智能技术来补充与潜在捐赠者和近亲的沟通值得调查,以确定基于法学硕士的方法是否满足有效沟通的共同要求。本研究通过提出比较定量基准和适应性评估框架,对法学硕士支持的通信的有限文献做出了贡献。五个法学硕士(chatgpt - 40, Grok3.0, Claude4Sonnet, Gemini2.5 Flash, DeepSeekR1)被用来生成六个关于土耳其遗体捐赠的常见问题的回答。四位解剖学家评估了准确性、质量、可读性和词汇多样性。对模型间差异进行统计学分析。两个表现最好的模型,chatgpt - 40和Grok3.0,在25分的检查表上获得了21.7±2.8和21.0±5.1的平均质量分数,在5分的全球质量量表上获得了4.58±0.88和4.25±1.03的平均质量分数,显着优于其余三个系统(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring body donation communication with large language models: Accuracy, readability, and ethical considerations.

Educational materials advocating whole-body donation must be accurate, easy to read, and transparent, as one potential solution to the fact that the supply of donations is not keeping pace with educational demand, thereby disrupting anatomy education programs. The use of AI technologies to supplement communications with prospective donors and next of kin deserves investigation to determine whether LLM-based approaches meet the common requirements for effective communication. This study contributes to the limited literature on LLM-supported communications by presenting a comparative quantitative benchmark and an adaptable evaluation framework. Five LLMs (ChatGPT-4o, Grok3.0, Claude4Sonnet, Gemini2.5 Flash, DeepSeekR1) were used to generate responses to six frequently asked questions about body donation in Turkish. Four anatomists evaluated accuracy, quality, readability, and vocabulary diversity. Differences between models were statistically analyzed. The two top-performing models, ChatGPT-4o and Grok3.0, achieved mean quality scores of 21.7 ± 2.8 and 21.0 ± 5.1 on a 25-point checklist, and 4.58 ± 0.88 and 4.25 ± 1.03 on a 5-point global quality scale, significantly outperforming the remaining three systems (p < 0.037). Both maintained a below-secondary-school level on two validated readability indices (scores ≥67.8 and ≥40.2). LLM-produced body donation materials (e.g., informational texts and FAQs) may help promote the importance of whole-body donations by providing accessible and reliable information, potentially streamlining the creation of first drafts and reducing staff workload. Given the sensitivity of donation decisions, ethical transparency, cultural sensitivity, and continuous human oversight are essential safeguards. Therefore, LLM use for such purposes should be governed by clear governance frameworks, regular expert audits, and publicly disclosed quality metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anatomical Sciences Education
Anatomical Sciences Education Anatomy/education-
CiteScore
10.30
自引率
39.70%
发文量
91
期刊介绍: Anatomical Sciences Education, affiliated with the American Association for Anatomy, serves as an international platform for sharing ideas, innovations, and research related to education in anatomical sciences. Covering gross anatomy, embryology, histology, and neurosciences, the journal addresses education at various levels, including undergraduate, graduate, post-graduate, allied health, medical (both allopathic and osteopathic), and dental. It fosters collaboration and discussion in the field of anatomical sciences education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信