{"title":"绿色胶体银的技术经济和生命周期分析:走向规模化","authors":"Federico Trotta, Danielle Winning, Dea Bozhani, Seyedeh Fatemeh Mirpoor, Stella Lignou, Sameer Khalil Ghawi, Dimitris Charalampopoulos","doi":"10.1002/gch2.202500263","DOIUrl":null,"url":null,"abstract":"<p>Silver particles (AgPs) are increasingly used across a range of industries, including personal care, household, and food packaging, but conventional synthesis methods involve high production costs and negative environmental impacts. Green synthesis using plant extracts offers a sustainable alternative, though limited comparative data on economic and environmental performance exist. This study evaluates three green methods—BX3 (a patented extract), lemon juice (LJ), and green tea (GT)—against a conventional method using sodium borohydride (NaBH₄). Equal-volume reactions are analyzed via ICP-MS, UV–vis spectroscopy, and dynamic light scattering. Techno-economic analysis and life cycle assessment (LCA) assessed costs and environmental impact. BX3 emerged as the most cost-effective and environmentally friendly option, producing AgPs at $13,000/kg with a 75% yield and a global warming potential of 1,900 kg CO₂-Eq/kg. In contrast, NaBH₄ yielded 7.35% at $195,000/kg, 15x more expensive than the BX3 method, and a global warming potential of 74,000 kg CO₂-Eq/kg. GT, while a green method, has the highest cost $690,000/kg, the lowest yield (1.13%), and the worst environmental impact, including a human toxicity value of 92,000 kg 1,4-DCB-Eq/kg-even surpassing the toxic NaBH₄ process. These findings highlight BX3's promise for scalable, low-impact AgP production and broader industrial use.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"9 9","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202500263","citationCount":"0","resultStr":"{\"title\":\"Techno-Economic and Lifecycle Analysis of Green Colloidal Silver: Moving toward Scale-Up\",\"authors\":\"Federico Trotta, Danielle Winning, Dea Bozhani, Seyedeh Fatemeh Mirpoor, Stella Lignou, Sameer Khalil Ghawi, Dimitris Charalampopoulos\",\"doi\":\"10.1002/gch2.202500263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silver particles (AgPs) are increasingly used across a range of industries, including personal care, household, and food packaging, but conventional synthesis methods involve high production costs and negative environmental impacts. Green synthesis using plant extracts offers a sustainable alternative, though limited comparative data on economic and environmental performance exist. This study evaluates three green methods—BX3 (a patented extract), lemon juice (LJ), and green tea (GT)—against a conventional method using sodium borohydride (NaBH₄). Equal-volume reactions are analyzed via ICP-MS, UV–vis spectroscopy, and dynamic light scattering. Techno-economic analysis and life cycle assessment (LCA) assessed costs and environmental impact. BX3 emerged as the most cost-effective and environmentally friendly option, producing AgPs at $13,000/kg with a 75% yield and a global warming potential of 1,900 kg CO₂-Eq/kg. In contrast, NaBH₄ yielded 7.35% at $195,000/kg, 15x more expensive than the BX3 method, and a global warming potential of 74,000 kg CO₂-Eq/kg. GT, while a green method, has the highest cost $690,000/kg, the lowest yield (1.13%), and the worst environmental impact, including a human toxicity value of 92,000 kg 1,4-DCB-Eq/kg-even surpassing the toxic NaBH₄ process. These findings highlight BX3's promise for scalable, low-impact AgP production and broader industrial use.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202500263\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202500263\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202500263","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
银颗粒(AgPs)越来越多地用于包括个人护理,家庭和食品包装在内的一系列行业,但传统的合成方法涉及高生产成本和负面环境影响。使用植物提取物的绿色合成提供了一种可持续的替代方法,尽管关于经济和环境性能的比较数据有限。本研究评估了三种绿色方法- bx3(专利提取物),柠檬汁(LJ)和绿茶(GT) -与使用硼氢化钠(NaBH₄)的传统方法相比。等体积反应通过ICP-MS、UV-vis光谱和动态光散射进行分析。技术经济分析和生命周期评价(LCA)评估了成本和环境影响。BX3成为最具成本效益和最环保的选择,生产agp的成本为13,000美元/公斤,产量为75%,全球变暖潜能值为1,900公斤二氧化碳当量/公斤。相比之下,NaBH₄的收率为7.35%,成本为19.5万美元/公斤,比BX3方法贵15倍,全球变暖潜能值为74,000 kg CO₂-Eq/kg。GT虽然是一种绿色方法,但成本最高,每公斤69万美元,产量最低(1.13%),环境影响最差,包括人体毒性值为92,000 kg 1,4- dcb - eq /kg,甚至超过了毒性的NaBH₄工艺。这些发现突出了BX3在可扩展、低影响的AgP生产和更广泛的工业应用方面的前景。
Techno-Economic and Lifecycle Analysis of Green Colloidal Silver: Moving toward Scale-Up
Silver particles (AgPs) are increasingly used across a range of industries, including personal care, household, and food packaging, but conventional synthesis methods involve high production costs and negative environmental impacts. Green synthesis using plant extracts offers a sustainable alternative, though limited comparative data on economic and environmental performance exist. This study evaluates three green methods—BX3 (a patented extract), lemon juice (LJ), and green tea (GT)—against a conventional method using sodium borohydride (NaBH₄). Equal-volume reactions are analyzed via ICP-MS, UV–vis spectroscopy, and dynamic light scattering. Techno-economic analysis and life cycle assessment (LCA) assessed costs and environmental impact. BX3 emerged as the most cost-effective and environmentally friendly option, producing AgPs at $13,000/kg with a 75% yield and a global warming potential of 1,900 kg CO₂-Eq/kg. In contrast, NaBH₄ yielded 7.35% at $195,000/kg, 15x more expensive than the BX3 method, and a global warming potential of 74,000 kg CO₂-Eq/kg. GT, while a green method, has the highest cost $690,000/kg, the lowest yield (1.13%), and the worst environmental impact, including a human toxicity value of 92,000 kg 1,4-DCB-Eq/kg-even surpassing the toxic NaBH₄ process. These findings highlight BX3's promise for scalable, low-impact AgP production and broader industrial use.