Debby Chun-Ting Yang, David Adner, Marko Turek, Christian Hagendorf, Chun-Nan Chen
{"title":"独立光电化学制氢技术的技术经济和效益评价","authors":"Debby Chun-Ting Yang, David Adner, Marko Turek, Christian Hagendorf, Chun-Nan Chen","doi":"10.1002/gch2.202500293","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen production from renewable energy sources without CO<sub>2</sub> emissions forms a fundamental pillar of the emerging hydrogen-based economy. Hydrogen technologies demonstrate significant potential for energy storage and integration across chemical and materials industries. Direct solar-to-hydrogen (STH) conversion via photoelectrochemical (PEC) water splitting is technologically feasible but has not yet been commercialized. A techno-economic and financial viability assessment is performed on stand-alone PEC reactors operating in Germany. A detailed cost structure of the photoelectrochemical reactor is carried out. The total cost of the PEC reactor with a 500 cm<sup>2</sup> active area is ≈€94.19 based on experimental data. The levelized cost of hydrogen for an off-grid PEC system in Munich is calculated as €83.71/kg, assuming a 5% STH efficiency. The sensitivity analysis highlights hydrogen production and lifetime as key factors, with hydrogen production determined by STH efficiency and solar irradiance. Upscaling scenarios indicate that achieving a target hydrogen cost of €2/kg is feasible by extending the reactor lifetime to 20 years, reaching 20% STH efficiency, reducing initial capital expenditure by 80%, and securing favorable capital structure with a weighted average cost of capital of 10% or lower. The findings highlight how scaling can support the financial feasibility of PEC hydrogen production.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"9 9","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202500293","citationCount":"0","resultStr":"{\"title\":\"Techno-Economic and Profitability Assessment of Stand-Alone Photoelectrochemical Hydrogen Generation Technology\",\"authors\":\"Debby Chun-Ting Yang, David Adner, Marko Turek, Christian Hagendorf, Chun-Nan Chen\",\"doi\":\"10.1002/gch2.202500293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogen production from renewable energy sources without CO<sub>2</sub> emissions forms a fundamental pillar of the emerging hydrogen-based economy. Hydrogen technologies demonstrate significant potential for energy storage and integration across chemical and materials industries. Direct solar-to-hydrogen (STH) conversion via photoelectrochemical (PEC) water splitting is technologically feasible but has not yet been commercialized. A techno-economic and financial viability assessment is performed on stand-alone PEC reactors operating in Germany. A detailed cost structure of the photoelectrochemical reactor is carried out. The total cost of the PEC reactor with a 500 cm<sup>2</sup> active area is ≈€94.19 based on experimental data. The levelized cost of hydrogen for an off-grid PEC system in Munich is calculated as €83.71/kg, assuming a 5% STH efficiency. The sensitivity analysis highlights hydrogen production and lifetime as key factors, with hydrogen production determined by STH efficiency and solar irradiance. Upscaling scenarios indicate that achieving a target hydrogen cost of €2/kg is feasible by extending the reactor lifetime to 20 years, reaching 20% STH efficiency, reducing initial capital expenditure by 80%, and securing favorable capital structure with a weighted average cost of capital of 10% or lower. The findings highlight how scaling can support the financial feasibility of PEC hydrogen production.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202500293\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202500293\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202500293","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Techno-Economic and Profitability Assessment of Stand-Alone Photoelectrochemical Hydrogen Generation Technology
Hydrogen production from renewable energy sources without CO2 emissions forms a fundamental pillar of the emerging hydrogen-based economy. Hydrogen technologies demonstrate significant potential for energy storage and integration across chemical and materials industries. Direct solar-to-hydrogen (STH) conversion via photoelectrochemical (PEC) water splitting is technologically feasible but has not yet been commercialized. A techno-economic and financial viability assessment is performed on stand-alone PEC reactors operating in Germany. A detailed cost structure of the photoelectrochemical reactor is carried out. The total cost of the PEC reactor with a 500 cm2 active area is ≈€94.19 based on experimental data. The levelized cost of hydrogen for an off-grid PEC system in Munich is calculated as €83.71/kg, assuming a 5% STH efficiency. The sensitivity analysis highlights hydrogen production and lifetime as key factors, with hydrogen production determined by STH efficiency and solar irradiance. Upscaling scenarios indicate that achieving a target hydrogen cost of €2/kg is feasible by extending the reactor lifetime to 20 years, reaching 20% STH efficiency, reducing initial capital expenditure by 80%, and securing favorable capital structure with a weighted average cost of capital of 10% or lower. The findings highlight how scaling can support the financial feasibility of PEC hydrogen production.