carau纳米流体中Marangoni对流的ai驱动有限元分析

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Kotike Jyothi, Leelavathi Rekapalli, Muhammad Usman, Balram Yelamasetti, Zubairuddin M., S. K. Mohammad Shareef, Dhanesh G. Mohan
{"title":"carau纳米流体中Marangoni对流的ai驱动有限元分析","authors":"Kotike Jyothi,&nbsp;Leelavathi Rekapalli,&nbsp;Muhammad Usman,&nbsp;Balram Yelamasetti,&nbsp;Zubairuddin M.,&nbsp;S. K. Mohammad Shareef,&nbsp;Dhanesh G. Mohan","doi":"10.1155/er/2443590","DOIUrl":null,"url":null,"abstract":"<p>This study examines the influence of nonlinear thermal radiation on Carreau nanofluid flow over a wedge under Marangoni boundary conditions. The model incorporates thermophoresis and Brownian motion effects, with governing partial differential equations reduced to ordinary differential form via similarity transformations. The analysis focuses on velocity, temperature, and concentration distributions, alongside key transport parameters: Nusselt number (Nu<sub><i>x</i></sub>), Sherwood number (Sh<sub><i>x</i></sub>), and skin friction coefficient (Cf<sub><i>x</i></sub>). To enhance predictive capability, a supervised artificial neural network (ANN) based on the Levenberg–Marquardt algorithm is implemented in MATLAB. Trained on simulation data, the ANN demonstrates high regression accuracy with a mean squared error (MSE) below 0.001. Results indicate that Nu<sub><i>x</i></sub> increases by 12% as the magnetic parameter rises from 0.5 to 2, while Sh<sub><i>x</i></sub> decreases by 9% as thermophoresis increases from 0.1 to 0.6. This hybrid FEM–ANN framework offers new insights into Marangoni-driven nanofluid dynamics and provides a robust surrogate modeling approach for optimizing complex thermal transport systems.</p>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/2443590","citationCount":"0","resultStr":"{\"title\":\"AI-Driven FEM Analysis of Marangoni Convection in Carreau Nanofluids\",\"authors\":\"Kotike Jyothi,&nbsp;Leelavathi Rekapalli,&nbsp;Muhammad Usman,&nbsp;Balram Yelamasetti,&nbsp;Zubairuddin M.,&nbsp;S. K. Mohammad Shareef,&nbsp;Dhanesh G. Mohan\",\"doi\":\"10.1155/er/2443590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the influence of nonlinear thermal radiation on Carreau nanofluid flow over a wedge under Marangoni boundary conditions. The model incorporates thermophoresis and Brownian motion effects, with governing partial differential equations reduced to ordinary differential form via similarity transformations. The analysis focuses on velocity, temperature, and concentration distributions, alongside key transport parameters: Nusselt number (Nu<sub><i>x</i></sub>), Sherwood number (Sh<sub><i>x</i></sub>), and skin friction coefficient (Cf<sub><i>x</i></sub>). To enhance predictive capability, a supervised artificial neural network (ANN) based on the Levenberg–Marquardt algorithm is implemented in MATLAB. Trained on simulation data, the ANN demonstrates high regression accuracy with a mean squared error (MSE) below 0.001. Results indicate that Nu<sub><i>x</i></sub> increases by 12% as the magnetic parameter rises from 0.5 to 2, while Sh<sub><i>x</i></sub> decreases by 9% as thermophoresis increases from 0.1 to 0.6. This hybrid FEM–ANN framework offers new insights into Marangoni-driven nanofluid dynamics and provides a robust surrogate modeling approach for optimizing complex thermal transport systems.</p>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/2443590\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/er/2443590\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/2443590","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在马兰戈尼边界条件下,非线性热辐射对楔形卡罗纳米流体流动的影响。该模型结合了热泳动效应和布朗运动效应,通过相似变换将控制偏微分方程简化为常微分形式。分析的重点是速度、温度和浓度分布,以及关键的传输参数:努塞尔数(Nux)、舍伍德数(Shx)和表面摩擦系数(Cfx)。为了提高预测能力,在MATLAB中实现了一种基于Levenberg-Marquardt算法的监督人工神经网络(ANN)。在模拟数据的训练下,人工神经网络显示出较高的回归精度,均方误差(MSE)低于0.001。结果表明,当磁参数从0.5增加到2时,Nux增加12%,而当热泳率从0.1增加到0.6时,Shx减少9%。这种混合FEM-ANN框架为marangoni驱动的纳米流体动力学提供了新的见解,并为优化复杂的热输运系统提供了强大的替代建模方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AI-Driven FEM Analysis of Marangoni Convection in Carreau Nanofluids

AI-Driven FEM Analysis of Marangoni Convection in Carreau Nanofluids

This study examines the influence of nonlinear thermal radiation on Carreau nanofluid flow over a wedge under Marangoni boundary conditions. The model incorporates thermophoresis and Brownian motion effects, with governing partial differential equations reduced to ordinary differential form via similarity transformations. The analysis focuses on velocity, temperature, and concentration distributions, alongside key transport parameters: Nusselt number (Nux), Sherwood number (Shx), and skin friction coefficient (Cfx). To enhance predictive capability, a supervised artificial neural network (ANN) based on the Levenberg–Marquardt algorithm is implemented in MATLAB. Trained on simulation data, the ANN demonstrates high regression accuracy with a mean squared error (MSE) below 0.001. Results indicate that Nux increases by 12% as the magnetic parameter rises from 0.5 to 2, while Shx decreases by 9% as thermophoresis increases from 0.1 to 0.6. This hybrid FEM–ANN framework offers new insights into Marangoni-driven nanofluid dynamics and provides a robust surrogate modeling approach for optimizing complex thermal transport systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信