Hector Acosta-Rodriguez, Pratheek Bobba, Alicia Stephan, Tal Zeevi, Ajay Malhotra, Anh Tuan Tran, Simone Kaltenhauser, Laura Ment, Seyedmehdi Payabvash
{"title":"童年邻里剥夺对青春期白质和功能连通性的影响","authors":"Hector Acosta-Rodriguez, Pratheek Bobba, Alicia Stephan, Tal Zeevi, Ajay Malhotra, Anh Tuan Tran, Simone Kaltenhauser, Laura Ment, Seyedmehdi Payabvash","doi":"10.1111/jon.70087","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Socioeconomic determinants of health impact childhood development and adult health outcomes. One key aspect is the physical environment and neighborhood where children live and grow. Emerging evidence suggests that neighborhood deprivation, often measured by the Area Deprivation Index (ADI), may influence neurodevelopment, but longitudinal and multimodal neuroimaging analyses remain limited.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We examined the association between childhood neighborhoods and brain white matter (WM) microstructural integrity using a large, demographically representative cohort from the Adolescent Brain Cognitive Development Study. We analyzed the relationship between ADI and MRI metrics of WM microstructural integrity and resting-state funtional magnetic resonance imaging (rs-fMRI) connectivity in children with data at baseline (mean age of 9.9 years) and follow-up (mean age 12.0 years), with a sample size of <i>n</i> = 2615.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Children living in poorer neighborhoods (higher ADI) showed lower brain WM microstructural integrity at baseline and follow-up, even after adjusting for age, sex, race/ethnicity, head size, body mass index, parental education, and income levels. This reduced microstructure was seen in critical tracts, such as the superior longitudinal fasciculus, corpus callosum, and the uncinate. Additionally, baseline and follow-up rs-fMRI analysis revealed that children living in poorer neighborhoods had decreased connectivity within the retrosplenial-temporal network and between higher-order networks, such as the cingulo-opercular network.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>These findings highlight the influence of neighborhood socioeconomic disadvantage on both WM microstructural integrity and functional brain connectivity in the preadolescent brain. Children from more deprived neighborhoods showed reduced integrity in key WM tracts and disrupted connectivity within and between higher-order networks.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"35 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Childhood Neighborhood Deprivation on White Matter and Functional Connectivity During Adolescence\",\"authors\":\"Hector Acosta-Rodriguez, Pratheek Bobba, Alicia Stephan, Tal Zeevi, Ajay Malhotra, Anh Tuan Tran, Simone Kaltenhauser, Laura Ment, Seyedmehdi Payabvash\",\"doi\":\"10.1111/jon.70087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>Socioeconomic determinants of health impact childhood development and adult health outcomes. One key aspect is the physical environment and neighborhood where children live and grow. Emerging evidence suggests that neighborhood deprivation, often measured by the Area Deprivation Index (ADI), may influence neurodevelopment, but longitudinal and multimodal neuroimaging analyses remain limited.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We examined the association between childhood neighborhoods and brain white matter (WM) microstructural integrity using a large, demographically representative cohort from the Adolescent Brain Cognitive Development Study. We analyzed the relationship between ADI and MRI metrics of WM microstructural integrity and resting-state funtional magnetic resonance imaging (rs-fMRI) connectivity in children with data at baseline (mean age of 9.9 years) and follow-up (mean age 12.0 years), with a sample size of <i>n</i> = 2615.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Children living in poorer neighborhoods (higher ADI) showed lower brain WM microstructural integrity at baseline and follow-up, even after adjusting for age, sex, race/ethnicity, head size, body mass index, parental education, and income levels. This reduced microstructure was seen in critical tracts, such as the superior longitudinal fasciculus, corpus callosum, and the uncinate. Additionally, baseline and follow-up rs-fMRI analysis revealed that children living in poorer neighborhoods had decreased connectivity within the retrosplenial-temporal network and between higher-order networks, such as the cingulo-opercular network.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>These findings highlight the influence of neighborhood socioeconomic disadvantage on both WM microstructural integrity and functional brain connectivity in the preadolescent brain. Children from more deprived neighborhoods showed reduced integrity in key WM tracts and disrupted connectivity within and between higher-order networks.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.70087\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.70087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Impact of Childhood Neighborhood Deprivation on White Matter and Functional Connectivity During Adolescence
Background and Purpose
Socioeconomic determinants of health impact childhood development and adult health outcomes. One key aspect is the physical environment and neighborhood where children live and grow. Emerging evidence suggests that neighborhood deprivation, often measured by the Area Deprivation Index (ADI), may influence neurodevelopment, but longitudinal and multimodal neuroimaging analyses remain limited.
Methods
We examined the association between childhood neighborhoods and brain white matter (WM) microstructural integrity using a large, demographically representative cohort from the Adolescent Brain Cognitive Development Study. We analyzed the relationship between ADI and MRI metrics of WM microstructural integrity and resting-state funtional magnetic resonance imaging (rs-fMRI) connectivity in children with data at baseline (mean age of 9.9 years) and follow-up (mean age 12.0 years), with a sample size of n = 2615.
Results
Children living in poorer neighborhoods (higher ADI) showed lower brain WM microstructural integrity at baseline and follow-up, even after adjusting for age, sex, race/ethnicity, head size, body mass index, parental education, and income levels. This reduced microstructure was seen in critical tracts, such as the superior longitudinal fasciculus, corpus callosum, and the uncinate. Additionally, baseline and follow-up rs-fMRI analysis revealed that children living in poorer neighborhoods had decreased connectivity within the retrosplenial-temporal network and between higher-order networks, such as the cingulo-opercular network.
Conclusions
These findings highlight the influence of neighborhood socioeconomic disadvantage on both WM microstructural integrity and functional brain connectivity in the preadolescent brain. Children from more deprived neighborhoods showed reduced integrity in key WM tracts and disrupted connectivity within and between higher-order networks.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!