大规模V2G数据共享场景下恶意充电桩溯源的安全数据聚合方案

IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
IET Smart Grid Pub Date : 2025-09-07 DOI:10.1049/stg2.70033
Nan Zhang, Di Liu, Yuhang Liu, Zhi Li, Jingyang Wang, Fusheng Lan, Wei Liang
{"title":"大规模V2G数据共享场景下恶意充电桩溯源的安全数据聚合方案","authors":"Nan Zhang,&nbsp;Di Liu,&nbsp;Yuhang Liu,&nbsp;Zhi Li,&nbsp;Jingyang Wang,&nbsp;Fusheng Lan,&nbsp;Wei Liang","doi":"10.1049/stg2.70033","DOIUrl":null,"url":null,"abstract":"<p>In large-scale vehicle-to-grid (V2G) data-sharing scenarios, the secure and accurate aggregation of data from charging piles is crucial to optimise orderly charging services for electric vehicles (EVs) and to support demand response or load forecasting. Existing data aggregation schemes often fail to detect outlier sharing-data sent by charging piles compromised by false data injection (FDI) attacks. To address this, we propose a lightweight secure data aggregation scheme that integrates node-level malicious charging piles traceback and isolation with distributed EC-ElGamal encryption. First, charging piles use the Hellinger-distance of shared charging data between adjacent charging cycles to judge whether the piles are malicious, and through iterative row/column cyclic shift operations, every malicious pile is tracebacked and excluded into a single designated group. Second, distributed key shares create a group public key while each pile retains its own secret key, enabling node-level distributed decryption of the aggregated ciphertext via lightweight EC-ElGamal addition and a single Pollard-lambda lookup. Experiments on 18,061 UrbanEV charging piles demonstrate an 81.7%–100% malicious piles excluding ratio, linear convergence (≈0.07 iterations per added pile), and security analysis proves that the proposed scheme has ECDDH anonymity, collusion resistance and differential-privacy immunity.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"8 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.70033","citationCount":"0","resultStr":"{\"title\":\"A Secure Data Aggregation Scheme to Traceback Malicious Charging Piles for Large-Scale V2G Data-Sharing Scenarios\",\"authors\":\"Nan Zhang,&nbsp;Di Liu,&nbsp;Yuhang Liu,&nbsp;Zhi Li,&nbsp;Jingyang Wang,&nbsp;Fusheng Lan,&nbsp;Wei Liang\",\"doi\":\"10.1049/stg2.70033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In large-scale vehicle-to-grid (V2G) data-sharing scenarios, the secure and accurate aggregation of data from charging piles is crucial to optimise orderly charging services for electric vehicles (EVs) and to support demand response or load forecasting. Existing data aggregation schemes often fail to detect outlier sharing-data sent by charging piles compromised by false data injection (FDI) attacks. To address this, we propose a lightweight secure data aggregation scheme that integrates node-level malicious charging piles traceback and isolation with distributed EC-ElGamal encryption. First, charging piles use the Hellinger-distance of shared charging data between adjacent charging cycles to judge whether the piles are malicious, and through iterative row/column cyclic shift operations, every malicious pile is tracebacked and excluded into a single designated group. Second, distributed key shares create a group public key while each pile retains its own secret key, enabling node-level distributed decryption of the aggregated ciphertext via lightweight EC-ElGamal addition and a single Pollard-lambda lookup. Experiments on 18,061 UrbanEV charging piles demonstrate an 81.7%–100% malicious piles excluding ratio, linear convergence (≈0.07 iterations per added pile), and security analysis proves that the proposed scheme has ECDDH anonymity, collusion resistance and differential-privacy immunity.</p>\",\"PeriodicalId\":36490,\"journal\":{\"name\":\"IET Smart Grid\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.70033\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Smart Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/stg2.70033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/stg2.70033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在大规模车辆到电网(V2G)数据共享场景中,来自充电桩的安全准确的数据聚合对于优化电动汽车(ev)的有序充电服务以及支持需求响应或负荷预测至关重要。现有的数据聚合方案往往无法检测到被虚假数据注入(FDI)攻击破坏的充电桩发送的异常共享数据。为了解决这个问题,我们提出了一种轻量级的安全数据聚合方案,该方案将节点级恶意充电桩溯源和隔离与分布式EC-ElGamal加密集成在一起。首先,充电桩利用相邻充电周期之间共享充电数据的Hellinger-distance来判断桩是否为恶意桩,并通过迭代的行/列循环移位操作,将每个恶意桩追溯并排除到单个指定组中。其次,分布式密钥共享创建一个组公钥,而每个堆保留自己的秘密密钥,从而通过轻量级EC-ElGamal加法和单个polard -lambda查找实现对聚合密文的节点级分布式解密。在18061个UrbanEV充电桩上进行的实验表明,该方案的恶意桩排除率为81.7% ~ 100%,具有线性收敛性(每增加桩≈0.07次迭代),安全性分析证明该方案具有ECDDH匿名性、抗串通性和差分隐私免疫能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Secure Data Aggregation Scheme to Traceback Malicious Charging Piles for Large-Scale V2G Data-Sharing Scenarios

A Secure Data Aggregation Scheme to Traceback Malicious Charging Piles for Large-Scale V2G Data-Sharing Scenarios

A Secure Data Aggregation Scheme to Traceback Malicious Charging Piles for Large-Scale V2G Data-Sharing Scenarios

A Secure Data Aggregation Scheme to Traceback Malicious Charging Piles for Large-Scale V2G Data-Sharing Scenarios

A Secure Data Aggregation Scheme to Traceback Malicious Charging Piles for Large-Scale V2G Data-Sharing Scenarios

In large-scale vehicle-to-grid (V2G) data-sharing scenarios, the secure and accurate aggregation of data from charging piles is crucial to optimise orderly charging services for electric vehicles (EVs) and to support demand response or load forecasting. Existing data aggregation schemes often fail to detect outlier sharing-data sent by charging piles compromised by false data injection (FDI) attacks. To address this, we propose a lightweight secure data aggregation scheme that integrates node-level malicious charging piles traceback and isolation with distributed EC-ElGamal encryption. First, charging piles use the Hellinger-distance of shared charging data between adjacent charging cycles to judge whether the piles are malicious, and through iterative row/column cyclic shift operations, every malicious pile is tracebacked and excluded into a single designated group. Second, distributed key shares create a group public key while each pile retains its own secret key, enabling node-level distributed decryption of the aggregated ciphertext via lightweight EC-ElGamal addition and a single Pollard-lambda lookup. Experiments on 18,061 UrbanEV charging piles demonstrate an 81.7%–100% malicious piles excluding ratio, linear convergence (≈0.07 iterations per added pile), and security analysis proves that the proposed scheme has ECDDH anonymity, collusion resistance and differential-privacy immunity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信