基于自适应事件触发控制的多异步开关正系统的可靠饱和控制

IF 2.3 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Hongyuan Ma, Le Zhang, Hong Yang, Ying Zhao
{"title":"基于自适应事件触发控制的多异步开关正系统的可靠饱和控制","authors":"Hongyuan Ma,&nbsp;Le Zhang,&nbsp;Hong Yang,&nbsp;Ying Zhao","doi":"10.1049/cth2.70059","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the L1 gain stability problem of reliable control for positive systems with input saturation under multi-asynchronous switching. Firstly, by constructing a system state observer and integrating it with an output feedback control strategy, the input variables for the system controller were obtained, and a reliable controller with input saturation was designed. Secondly, to prevent data accumulation, an adaptive event-triggered control strategy that ensures the non-negativity requirements of positive systems is introduced between the observer and the system state. This strategy can adjust the tightness of the event-triggering process, which not only improves control efficiency but also reduces the risk of the Zeno effect. The following describes a switching strategy based on event-triggered control. Under the guidance of a time-varying mode-dependent average dwell-time switching strategy, the multi-asynchronous delay problem of sub-observers and sub-controllers with respect to subsystems is addressed, leading to a closed-loop control system based on error feedback. By constructing co-positive Lyapunov function, sufficient conditions for the positivity of the system under both synchronous- and asynchronous-switching are provided, and the L1 gain stability of the system in both synchronous and asynchronous intervals is verified. Finally, the significance of the proposed method is validated through an example.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70059","citationCount":"0","resultStr":"{\"title\":\"Reliable Saturation Control for Multiple Asynchronous Switched Positive Systems With Adaptive Event-Triggered Control\",\"authors\":\"Hongyuan Ma,&nbsp;Le Zhang,&nbsp;Hong Yang,&nbsp;Ying Zhao\",\"doi\":\"10.1049/cth2.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the L1 gain stability problem of reliable control for positive systems with input saturation under multi-asynchronous switching. Firstly, by constructing a system state observer and integrating it with an output feedback control strategy, the input variables for the system controller were obtained, and a reliable controller with input saturation was designed. Secondly, to prevent data accumulation, an adaptive event-triggered control strategy that ensures the non-negativity requirements of positive systems is introduced between the observer and the system state. This strategy can adjust the tightness of the event-triggering process, which not only improves control efficiency but also reduces the risk of the Zeno effect. The following describes a switching strategy based on event-triggered control. Under the guidance of a time-varying mode-dependent average dwell-time switching strategy, the multi-asynchronous delay problem of sub-observers and sub-controllers with respect to subsystems is addressed, leading to a closed-loop control system based on error feedback. By constructing co-positive Lyapunov function, sufficient conditions for the positivity of the system under both synchronous- and asynchronous-switching are provided, and the L1 gain stability of the system in both synchronous and asynchronous intervals is verified. Finally, the significance of the proposed method is validated through an example.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cth2.70059\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cth2.70059","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了多异步切换下输入饱和正系统可靠控制的L1增益稳定性问题。首先,通过构造系统状态观测器,并将其与输出反馈控制策略相结合,得到系统控制器的输入变量,设计出具有输入饱和的可靠控制器;其次,为了防止数据积累,在观测器和系统状态之间引入了一种自适应事件触发控制策略,该策略确保了正系统的非负性要求。该策略可以调节事件触发过程的紧密性,既提高了控制效率,又降低了芝诺效应的风险。下面介绍一种基于事件触发控制的切换策略。在时变模相关平均驻留时间切换策略的指导下,解决了子观测器和子控制器相对于子系统的多异步延迟问题,形成了基于误差反馈的闭环控制系统。通过构造协正Lyapunov函数,给出了系统在同步和异步切换下均为正的充分条件,验证了系统在同步和异步切换区间L1增益的稳定性。最后,通过算例验证了所提方法的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reliable Saturation Control for Multiple Asynchronous Switched Positive Systems With Adaptive Event-Triggered Control

Reliable Saturation Control for Multiple Asynchronous Switched Positive Systems With Adaptive Event-Triggered Control

Reliable Saturation Control for Multiple Asynchronous Switched Positive Systems With Adaptive Event-Triggered Control

Reliable Saturation Control for Multiple Asynchronous Switched Positive Systems With Adaptive Event-Triggered Control

Reliable Saturation Control for Multiple Asynchronous Switched Positive Systems With Adaptive Event-Triggered Control

This paper investigates the L1 gain stability problem of reliable control for positive systems with input saturation under multi-asynchronous switching. Firstly, by constructing a system state observer and integrating it with an output feedback control strategy, the input variables for the system controller were obtained, and a reliable controller with input saturation was designed. Secondly, to prevent data accumulation, an adaptive event-triggered control strategy that ensures the non-negativity requirements of positive systems is introduced between the observer and the system state. This strategy can adjust the tightness of the event-triggering process, which not only improves control efficiency but also reduces the risk of the Zeno effect. The following describes a switching strategy based on event-triggered control. Under the guidance of a time-varying mode-dependent average dwell-time switching strategy, the multi-asynchronous delay problem of sub-observers and sub-controllers with respect to subsystems is addressed, leading to a closed-loop control system based on error feedback. By constructing co-positive Lyapunov function, sufficient conditions for the positivity of the system under both synchronous- and asynchronous-switching are provided, and the L1 gain stability of the system in both synchronous and asynchronous intervals is verified. Finally, the significance of the proposed method is validated through an example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信