{"title":"基于双观测器的三模式网络攻击下车辆轨迹跟踪弹性控制","authors":"Zigui Kang, Tao Li, Xiaofei Fan","doi":"10.1049/cth2.70072","DOIUrl":null,"url":null,"abstract":"<p>This study addresses vehicle trajectory tracking control under tri-modal cyber attacks, encompassing fixed sensor-to-controller/controller-to-actuator channel attacks in lateral dynamics and sparse multi-sensor attacks in position tracking. A hybrid fuzzy modeling framework is developed, integrating fuzzy logic inference with Takagi-Sugeno fuzzy techniques to approximate vehicle dynamics with time-varying velocity, payload-dependent mass, and unmeasurable cornering stiffness avoiding the conservatism inherent in conventional linear fractional transformation approaches for cornering stiffness parameterization. A dual-observer architecture combining an extended state observer and a supervisory fuzzy reduced-order observer (ESO-SFRO) is proposed for simultaneous system state reconstruction and tri-modal attack signal estimation. Based on the estimated states, a cyber-resilient controller is designed to ensure lateral stability and trajectory tracking accuracy. Experimental validation via CarSim/Simulink co-simulation demonstrates the proposed ESO-SFRO based controller exhibits superior dynamic stability and trajectory tracking performance under coupled cyber-physical disturbances.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70072","citationCount":"0","resultStr":"{\"title\":\"Dual-Observer Based Resilient Control for Vehicle Trajectory Tracking Under Tri-Modal Cyber Attacks\",\"authors\":\"Zigui Kang, Tao Li, Xiaofei Fan\",\"doi\":\"10.1049/cth2.70072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses vehicle trajectory tracking control under tri-modal cyber attacks, encompassing fixed sensor-to-controller/controller-to-actuator channel attacks in lateral dynamics and sparse multi-sensor attacks in position tracking. A hybrid fuzzy modeling framework is developed, integrating fuzzy logic inference with Takagi-Sugeno fuzzy techniques to approximate vehicle dynamics with time-varying velocity, payload-dependent mass, and unmeasurable cornering stiffness avoiding the conservatism inherent in conventional linear fractional transformation approaches for cornering stiffness parameterization. A dual-observer architecture combining an extended state observer and a supervisory fuzzy reduced-order observer (ESO-SFRO) is proposed for simultaneous system state reconstruction and tri-modal attack signal estimation. Based on the estimated states, a cyber-resilient controller is designed to ensure lateral stability and trajectory tracking accuracy. Experimental validation via CarSim/Simulink co-simulation demonstrates the proposed ESO-SFRO based controller exhibits superior dynamic stability and trajectory tracking performance under coupled cyber-physical disturbances.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cth2.70072\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cth2.70072","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dual-Observer Based Resilient Control for Vehicle Trajectory Tracking Under Tri-Modal Cyber Attacks
This study addresses vehicle trajectory tracking control under tri-modal cyber attacks, encompassing fixed sensor-to-controller/controller-to-actuator channel attacks in lateral dynamics and sparse multi-sensor attacks in position tracking. A hybrid fuzzy modeling framework is developed, integrating fuzzy logic inference with Takagi-Sugeno fuzzy techniques to approximate vehicle dynamics with time-varying velocity, payload-dependent mass, and unmeasurable cornering stiffness avoiding the conservatism inherent in conventional linear fractional transformation approaches for cornering stiffness parameterization. A dual-observer architecture combining an extended state observer and a supervisory fuzzy reduced-order observer (ESO-SFRO) is proposed for simultaneous system state reconstruction and tri-modal attack signal estimation. Based on the estimated states, a cyber-resilient controller is designed to ensure lateral stability and trajectory tracking accuracy. Experimental validation via CarSim/Simulink co-simulation demonstrates the proposed ESO-SFRO based controller exhibits superior dynamic stability and trajectory tracking performance under coupled cyber-physical disturbances.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.