Md. Al Amin, Mehrukh Zehravi, Sherouk Hussein Sweilam, Patibandla Jahnavi, Jeetendra Kumar Gupta, Varikalla Rajashakar, Rajeshwar Vodeti, Abdul Ajeed Mohathasim Billah, G. Dharmamoorthy, Uppuluri Varuna Naga Venkata Arjun, Voleti Vijaya Kumar, Muath Suliman, Talha Bin Emran
{"title":"癌症中调节铁下垂的天然药物:分子途径和治疗观点","authors":"Md. Al Amin, Mehrukh Zehravi, Sherouk Hussein Sweilam, Patibandla Jahnavi, Jeetendra Kumar Gupta, Varikalla Rajashakar, Rajeshwar Vodeti, Abdul Ajeed Mohathasim Billah, G. Dharmamoorthy, Uppuluri Varuna Naga Venkata Arjun, Voleti Vijaya Kumar, Muath Suliman, Talha Bin Emran","doi":"10.1111/jcmm.70834","DOIUrl":null,"url":null,"abstract":"<p>Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity. Furthermore, these compounds, when combined with traditional chemotherapy or radiation therapy, can enhance therapeutic efficacy and overcome resistance. Natural compounds targeting ferroptosis offer innovative cancer treatment, particularly for resistant malignancies, due to their ability to interact with signalling pathways and produce specific cytotoxic effects. This review explores natural compounds' molecular mechanisms controlling ferroptosis in cancer, their interactions with traditional chemotherapeutics, translational hurdles, and clinical application directions, potentially leading to novel nature-inspired anticancer treatments. Further research and clinical trials are needed to confirm the safety, bioavailability, and effectiveness of ferroptosis medicines, focusing on improved formulation and transport methods.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 17","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70834","citationCount":"0","resultStr":"{\"title\":\"Natural Agents Modulating Ferroptosis in Cancer: Molecular Pathways and Therapeutic Perspectives\",\"authors\":\"Md. Al Amin, Mehrukh Zehravi, Sherouk Hussein Sweilam, Patibandla Jahnavi, Jeetendra Kumar Gupta, Varikalla Rajashakar, Rajeshwar Vodeti, Abdul Ajeed Mohathasim Billah, G. Dharmamoorthy, Uppuluri Varuna Naga Venkata Arjun, Voleti Vijaya Kumar, Muath Suliman, Talha Bin Emran\",\"doi\":\"10.1111/jcmm.70834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity. Furthermore, these compounds, when combined with traditional chemotherapy or radiation therapy, can enhance therapeutic efficacy and overcome resistance. Natural compounds targeting ferroptosis offer innovative cancer treatment, particularly for resistant malignancies, due to their ability to interact with signalling pathways and produce specific cytotoxic effects. This review explores natural compounds' molecular mechanisms controlling ferroptosis in cancer, their interactions with traditional chemotherapeutics, translational hurdles, and clinical application directions, potentially leading to novel nature-inspired anticancer treatments. Further research and clinical trials are needed to confirm the safety, bioavailability, and effectiveness of ferroptosis medicines, focusing on improved formulation and transport methods.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 17\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70834\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Natural Agents Modulating Ferroptosis in Cancer: Molecular Pathways and Therapeutic Perspectives
Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity. Furthermore, these compounds, when combined with traditional chemotherapy or radiation therapy, can enhance therapeutic efficacy and overcome resistance. Natural compounds targeting ferroptosis offer innovative cancer treatment, particularly for resistant malignancies, due to their ability to interact with signalling pathways and produce specific cytotoxic effects. This review explores natural compounds' molecular mechanisms controlling ferroptosis in cancer, their interactions with traditional chemotherapeutics, translational hurdles, and clinical application directions, potentially leading to novel nature-inspired anticancer treatments. Further research and clinical trials are needed to confirm the safety, bioavailability, and effectiveness of ferroptosis medicines, focusing on improved formulation and transport methods.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.