具有自适应脉宽匹配的1.2-6.6 GHz子采样锁相环,实现216 fs rms抖动和- 71.90 dBc参考杂散

IF 1.4 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xiang Cheng, Baolin Wei, Xueming Wei, Weilin Xu, Hongwei Yue
{"title":"具有自适应脉宽匹配的1.2-6.6 GHz子采样锁相环,实现216 fs rms抖动和- 71.90 dBc参考杂散","authors":"Xiang Cheng,&nbsp;Baolin Wei,&nbsp;Xueming Wei,&nbsp;Weilin Xu,&nbsp;Hongwei Yue","doi":"10.1007/s10470-025-02485-y","DOIUrl":null,"url":null,"abstract":"<div><p>With the demands for different rates of serial data received and transmitted in a communication system, an adaptive bandwidth sub-sampling phase-locked loop (AB-SSPLL) was designed. To maintain the bandwidth of the AB-SSPLL varying with the reference clock frequency, a self-biasing adaptive pulse width matching technique was introduced to the proposed AB-SSPLL. It adaptively adjusts the gain of the sub-sampling charge pump to maintain a constant ratio of the loop bandwidth to the reference clock frequency. The proposed AB-SSPLL has the advantages of broad bandwidth and low jitter. The AB-SSPLL is designed using a 40 nm COMS process and has an area of 0.21 × 0.26 mm<sup>2</sup>. The simulation results show that the phase-locked loop tuning range is 1.2–6.6 GHz, the root mean square jitter of the output clock is 312.3 fs@1.2 GHz and 216.3 fs@6.6 GHz, and the reference spurious is -71.90 dBc@1.2 GHz and − 61.39 dBc@6.6 GHz, respectively, and the jitter performance of ring-VCO-based AB-SSPLL can be comparable to that of the LC-VCO-based PLL.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"125 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 1.2–6.6 GHz Sub-sampling PLL with adaptive pulse width match achieving 216 fs rms jitter and − 71.90 dBc reference spurs\",\"authors\":\"Xiang Cheng,&nbsp;Baolin Wei,&nbsp;Xueming Wei,&nbsp;Weilin Xu,&nbsp;Hongwei Yue\",\"doi\":\"10.1007/s10470-025-02485-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the demands for different rates of serial data received and transmitted in a communication system, an adaptive bandwidth sub-sampling phase-locked loop (AB-SSPLL) was designed. To maintain the bandwidth of the AB-SSPLL varying with the reference clock frequency, a self-biasing adaptive pulse width matching technique was introduced to the proposed AB-SSPLL. It adaptively adjusts the gain of the sub-sampling charge pump to maintain a constant ratio of the loop bandwidth to the reference clock frequency. The proposed AB-SSPLL has the advantages of broad bandwidth and low jitter. The AB-SSPLL is designed using a 40 nm COMS process and has an area of 0.21 × 0.26 mm<sup>2</sup>. The simulation results show that the phase-locked loop tuning range is 1.2–6.6 GHz, the root mean square jitter of the output clock is 312.3 fs@1.2 GHz and 216.3 fs@6.6 GHz, and the reference spurious is -71.90 dBc@1.2 GHz and − 61.39 dBc@6.6 GHz, respectively, and the jitter performance of ring-VCO-based AB-SSPLL can be comparable to that of the LC-VCO-based PLL.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02485-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02485-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

针对通信系统对串行数据收发速率的要求,设计了一种自适应带宽分采样锁相环(AB-SSPLL)。为了保持AB-SSPLL的带宽随参考时钟频率的变化,提出了一种自偏置自适应脉宽匹配技术。它自适应地调整子采样电荷泵的增益,以保持环路带宽与参考时钟频率的恒定比率。所提出的AB-SSPLL具有带宽宽、抖动小的优点。AB-SSPLL采用40 nm COMS工艺设计,面积为0.21 × 0.26 mm2。仿真结果表明,锁相环调谐范围为1.2 ~ 6.6 GHz,输出时钟的根均方抖动分别为312.3 fs@1.2 GHz和216.3 fs@6.6 GHz,参考杂散分别为-71.90 dBc@1.2 GHz和- 61.39 dBc@6.6 GHz,基于环形vco的abs - sspll的抖动性能可与基于lc - vco的锁相环相比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A 1.2–6.6 GHz Sub-sampling PLL with adaptive pulse width match achieving 216 fs rms jitter and − 71.90 dBc reference spurs

A 1.2–6.6 GHz Sub-sampling PLL with adaptive pulse width match achieving 216 fs rms jitter and − 71.90 dBc reference spurs

A 1.2–6.6 GHz Sub-sampling PLL with adaptive pulse width match achieving 216 fs rms jitter and − 71.90 dBc reference spurs

With the demands for different rates of serial data received and transmitted in a communication system, an adaptive bandwidth sub-sampling phase-locked loop (AB-SSPLL) was designed. To maintain the bandwidth of the AB-SSPLL varying with the reference clock frequency, a self-biasing adaptive pulse width matching technique was introduced to the proposed AB-SSPLL. It adaptively adjusts the gain of the sub-sampling charge pump to maintain a constant ratio of the loop bandwidth to the reference clock frequency. The proposed AB-SSPLL has the advantages of broad bandwidth and low jitter. The AB-SSPLL is designed using a 40 nm COMS process and has an area of 0.21 × 0.26 mm2. The simulation results show that the phase-locked loop tuning range is 1.2–6.6 GHz, the root mean square jitter of the output clock is 312.3 fs@1.2 GHz and 216.3 fs@6.6 GHz, and the reference spurious is -71.90 dBc@1.2 GHz and − 61.39 dBc@6.6 GHz, respectively, and the jitter performance of ring-VCO-based AB-SSPLL can be comparable to that of the LC-VCO-based PLL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信