Gregory Albornoz-Palma, Sergio Henríquez-Gallegos, Miguel Pereira, A. Ribes-Greus
{"title":"通过添加tempo氧化木质纤维素纳米原纤维增强交联聚乙烯醇/磺基琥珀酸膜中的质子传输","authors":"Gregory Albornoz-Palma, Sergio Henríquez-Gallegos, Miguel Pereira, A. Ribes-Greus","doi":"10.1007/s10570-025-06691-9","DOIUrl":null,"url":null,"abstract":"<div><p>The membranes based on poly(vinyl alcohol) (PVA) and sulfosuccinic acid (SSA) are an interesting alternative for use in proton exchange membrane fuel cells (PEMFC), due to their low cost. Nevertheless, it is necessary to enhance their electrochemical performance for their use. This research aims to understand the effect of the addition of TOLCNFs with different lignin content on the physicochemical properties of PVA/SSA-based membranes, proton transport, and their performance as electrolytes in a laboratory PEMFC. For this, TEMPO-oxidized lignocellulose nanofibrils (TOLCNFs) were produced from <i>Pinus radiata</i> pulp that was delignified using oxidative treatments. TOLCNFs with a lignin content of 29.7% (TOLCNF-0), 21.8% (TOLCNF-0.75), 16.9% (TOLCNF-2), and 9.7% (TOLCNF-5) were obtained by varying oxidative treatment times. Membranes of PVA, SSA, and 5% (w/w) TOLCNF were prepared. The addition of TOLCNF changed the structure of the PVA/SSA membrane, promoting cross-linking between the fibrils. Furthermore, they increased the water absorption capacity (W) and decreased the swelling (S). The proton transport by diffusion through the membranes was hindered by the addition of the TOLCNFs. Despite that, the TOLCNFs promoted proton conductivity through the membranes, due to the increase in their water absorption capacity, hydrophilicity, cross-linking, and W/S ratio. Notably, the PVA/SSA/TOLCNF-0 and PVA/SSA/TOLCNF-2 membranes exhibited the highest proton conductivity over the entire temperature range studied (40–110 °C). Finally, the incorporation of the TOLCNFs improved the performance of the PVA/SSA membrane as an electrolyte in a laboratory PEMFC, with the TOLCNF-0 proving to be the best filler for the PVA/SSA membrane.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 13","pages":"7839 - 7859"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing proton transport in cross-linked poly(vinyl alcohol)/sulfosuccinic acid membranes by adding TEMPO-oxidized lignocellulose nanofibrils\",\"authors\":\"Gregory Albornoz-Palma, Sergio Henríquez-Gallegos, Miguel Pereira, A. Ribes-Greus\",\"doi\":\"10.1007/s10570-025-06691-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The membranes based on poly(vinyl alcohol) (PVA) and sulfosuccinic acid (SSA) are an interesting alternative for use in proton exchange membrane fuel cells (PEMFC), due to their low cost. Nevertheless, it is necessary to enhance their electrochemical performance for their use. This research aims to understand the effect of the addition of TOLCNFs with different lignin content on the physicochemical properties of PVA/SSA-based membranes, proton transport, and their performance as electrolytes in a laboratory PEMFC. For this, TEMPO-oxidized lignocellulose nanofibrils (TOLCNFs) were produced from <i>Pinus radiata</i> pulp that was delignified using oxidative treatments. TOLCNFs with a lignin content of 29.7% (TOLCNF-0), 21.8% (TOLCNF-0.75), 16.9% (TOLCNF-2), and 9.7% (TOLCNF-5) were obtained by varying oxidative treatment times. Membranes of PVA, SSA, and 5% (w/w) TOLCNF were prepared. The addition of TOLCNF changed the structure of the PVA/SSA membrane, promoting cross-linking between the fibrils. Furthermore, they increased the water absorption capacity (W) and decreased the swelling (S). The proton transport by diffusion through the membranes was hindered by the addition of the TOLCNFs. Despite that, the TOLCNFs promoted proton conductivity through the membranes, due to the increase in their water absorption capacity, hydrophilicity, cross-linking, and W/S ratio. Notably, the PVA/SSA/TOLCNF-0 and PVA/SSA/TOLCNF-2 membranes exhibited the highest proton conductivity over the entire temperature range studied (40–110 °C). Finally, the incorporation of the TOLCNFs improved the performance of the PVA/SSA membrane as an electrolyte in a laboratory PEMFC, with the TOLCNF-0 proving to be the best filler for the PVA/SSA membrane.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":511,\"journal\":{\"name\":\"Cellulose\",\"volume\":\"32 13\",\"pages\":\"7839 - 7859\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10570-025-06691-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06691-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Enhancing proton transport in cross-linked poly(vinyl alcohol)/sulfosuccinic acid membranes by adding TEMPO-oxidized lignocellulose nanofibrils
The membranes based on poly(vinyl alcohol) (PVA) and sulfosuccinic acid (SSA) are an interesting alternative for use in proton exchange membrane fuel cells (PEMFC), due to their low cost. Nevertheless, it is necessary to enhance their electrochemical performance for their use. This research aims to understand the effect of the addition of TOLCNFs with different lignin content on the physicochemical properties of PVA/SSA-based membranes, proton transport, and their performance as electrolytes in a laboratory PEMFC. For this, TEMPO-oxidized lignocellulose nanofibrils (TOLCNFs) were produced from Pinus radiata pulp that was delignified using oxidative treatments. TOLCNFs with a lignin content of 29.7% (TOLCNF-0), 21.8% (TOLCNF-0.75), 16.9% (TOLCNF-2), and 9.7% (TOLCNF-5) were obtained by varying oxidative treatment times. Membranes of PVA, SSA, and 5% (w/w) TOLCNF were prepared. The addition of TOLCNF changed the structure of the PVA/SSA membrane, promoting cross-linking between the fibrils. Furthermore, they increased the water absorption capacity (W) and decreased the swelling (S). The proton transport by diffusion through the membranes was hindered by the addition of the TOLCNFs. Despite that, the TOLCNFs promoted proton conductivity through the membranes, due to the increase in their water absorption capacity, hydrophilicity, cross-linking, and W/S ratio. Notably, the PVA/SSA/TOLCNF-0 and PVA/SSA/TOLCNF-2 membranes exhibited the highest proton conductivity over the entire temperature range studied (40–110 °C). Finally, the incorporation of the TOLCNFs improved the performance of the PVA/SSA membrane as an electrolyte in a laboratory PEMFC, with the TOLCNF-0 proving to be the best filler for the PVA/SSA membrane.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.