{"title":"废塑料催化热解制备碳纳米管的研究进展","authors":"Siqian Jia, Ning Cai, Chuanwen Zhao, Haiping Yang","doi":"10.1007/s11705-025-2604-8","DOIUrl":null,"url":null,"abstract":"<div><p>Catalytic pyrolysis technology, particularly using polyolefin plastic waste as feedstock, has emerged as a promising approach for transforming waste plastics into carbon nanotubes, not only reducing their production cost but also achieving efficient disposal and high-value utilization of plastic waste. This work reviews the research on the preparation of carbon nanotubes from various waste plastics and summarizes the influence of metals and support on catalysts. The design of reactors and the optimization of process conditions are also critical factors influencing the yield and quality of carbon nanotubes. The growth mechanism of carbon nanotubes is systematically elucidated, encompassing radical reactions during pyrolysis, carbon dissolution-precipitation dynamics on catalytic surfaces, and subsequent structural evolution. Collectively, this review underscores the significant potential of catalytic pyrolysis in advancing sustainable plastic waste management and high-value resource recovery.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of carbon nanotubes by catalytic pyrolysis of waste plastic: a mini review\",\"authors\":\"Siqian Jia, Ning Cai, Chuanwen Zhao, Haiping Yang\",\"doi\":\"10.1007/s11705-025-2604-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Catalytic pyrolysis technology, particularly using polyolefin plastic waste as feedstock, has emerged as a promising approach for transforming waste plastics into carbon nanotubes, not only reducing their production cost but also achieving efficient disposal and high-value utilization of plastic waste. This work reviews the research on the preparation of carbon nanotubes from various waste plastics and summarizes the influence of metals and support on catalysts. The design of reactors and the optimization of process conditions are also critical factors influencing the yield and quality of carbon nanotubes. The growth mechanism of carbon nanotubes is systematically elucidated, encompassing radical reactions during pyrolysis, carbon dissolution-precipitation dynamics on catalytic surfaces, and subsequent structural evolution. Collectively, this review underscores the significant potential of catalytic pyrolysis in advancing sustainable plastic waste management and high-value resource recovery.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2604-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2604-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Preparation of carbon nanotubes by catalytic pyrolysis of waste plastic: a mini review
Catalytic pyrolysis technology, particularly using polyolefin plastic waste as feedstock, has emerged as a promising approach for transforming waste plastics into carbon nanotubes, not only reducing their production cost but also achieving efficient disposal and high-value utilization of plastic waste. This work reviews the research on the preparation of carbon nanotubes from various waste plastics and summarizes the influence of metals and support on catalysts. The design of reactors and the optimization of process conditions are also critical factors influencing the yield and quality of carbon nanotubes. The growth mechanism of carbon nanotubes is systematically elucidated, encompassing radical reactions during pyrolysis, carbon dissolution-precipitation dynamics on catalytic surfaces, and subsequent structural evolution. Collectively, this review underscores the significant potential of catalytic pyrolysis in advancing sustainable plastic waste management and high-value resource recovery.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.