Chaochen Jin, Xiang Liu, Guoping Cai, Jun Sun, Dongfang Zhu
{"title":"新型大型二维平面相控阵天线的热变形分析与形状控制","authors":"Chaochen Jin, Xiang Liu, Guoping Cai, Jun Sun, Dongfang Zhu","doi":"10.1007/s42064-024-0238-0","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of space antennas is significantly affected by thermal deformation owing to the harsh thermal environment in space. This results in potential degradation in pointing accuracy and overall functionality. This study focused on the analysis and control of thermal deformation in large-scale two-dimensional planar phased array antennas. Employing the finite element method, we developed a comprehensive thermal and structural model of the antenna. This enabled us to simulate the steady-state temperature field and the associated thermal deformation at various orbital positions. To address this deformation issue, we propose an innovative shape-control approach that utilizes distributed cable actuators. The shape control challenge was reformulated into a layered optimization problem concerning actuator placement and force application. In the outer optimization layer, a discrete particle swarm optimization algorithm was used to determine the optimal locations for the actuators. In the inner optimization layer, quadratic programming was subsequently applied to calculate the optimal control forces for each actuator. We validated the proposed method by numerically simulating a novel large-scale two-dimensional planar phased array antenna. The results demonstrated the effectiveness of our method in mitigating thermal deformation and maintaining the structural integrity and shape accuracy of the antennas.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"9 4","pages":"583 - 604"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal deformation analysis and shape control of a novel large-scale two-dimensional planar phased array antenna\",\"authors\":\"Chaochen Jin, Xiang Liu, Guoping Cai, Jun Sun, Dongfang Zhu\",\"doi\":\"10.1007/s42064-024-0238-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The performance of space antennas is significantly affected by thermal deformation owing to the harsh thermal environment in space. This results in potential degradation in pointing accuracy and overall functionality. This study focused on the analysis and control of thermal deformation in large-scale two-dimensional planar phased array antennas. Employing the finite element method, we developed a comprehensive thermal and structural model of the antenna. This enabled us to simulate the steady-state temperature field and the associated thermal deformation at various orbital positions. To address this deformation issue, we propose an innovative shape-control approach that utilizes distributed cable actuators. The shape control challenge was reformulated into a layered optimization problem concerning actuator placement and force application. In the outer optimization layer, a discrete particle swarm optimization algorithm was used to determine the optimal locations for the actuators. In the inner optimization layer, quadratic programming was subsequently applied to calculate the optimal control forces for each actuator. We validated the proposed method by numerically simulating a novel large-scale two-dimensional planar phased array antenna. The results demonstrated the effectiveness of our method in mitigating thermal deformation and maintaining the structural integrity and shape accuracy of the antennas.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":\"9 4\",\"pages\":\"583 - 604\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-024-0238-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0238-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Thermal deformation analysis and shape control of a novel large-scale two-dimensional planar phased array antenna
The performance of space antennas is significantly affected by thermal deformation owing to the harsh thermal environment in space. This results in potential degradation in pointing accuracy and overall functionality. This study focused on the analysis and control of thermal deformation in large-scale two-dimensional planar phased array antennas. Employing the finite element method, we developed a comprehensive thermal and structural model of the antenna. This enabled us to simulate the steady-state temperature field and the associated thermal deformation at various orbital positions. To address this deformation issue, we propose an innovative shape-control approach that utilizes distributed cable actuators. The shape control challenge was reformulated into a layered optimization problem concerning actuator placement and force application. In the outer optimization layer, a discrete particle swarm optimization algorithm was used to determine the optimal locations for the actuators. In the inner optimization layer, quadratic programming was subsequently applied to calculate the optimal control forces for each actuator. We validated the proposed method by numerically simulating a novel large-scale two-dimensional planar phased array antenna. The results demonstrated the effectiveness of our method in mitigating thermal deformation and maintaining the structural integrity and shape accuracy of the antennas.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.