多孔ZnCo2O4纳米花表面氧化空位的形成以增强储能性能

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Deyang Zhang, Binhe Feng, Wenbo Guo, Jinbing Cheng, Kangwen Qiu, Ying Guo
{"title":"多孔ZnCo2O4纳米花表面氧化空位的形成以增强储能性能","authors":"Deyang Zhang,&nbsp;Binhe Feng,&nbsp;Wenbo Guo,&nbsp;Jinbing Cheng,&nbsp;Kangwen Qiu,&nbsp;Ying Guo","doi":"10.1186/s11671-025-04347-y","DOIUrl":null,"url":null,"abstract":"<div><p>A cost-effective and large-scale method for synthesizing ZnCo<sub>2</sub>O<sub>4</sub> nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCo<sub>2</sub>O<sub>4</sub> nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCo<sub>2</sub>O<sub>4</sub> are examined using density functional theory, revealing that treatment with NaBH<sub>4</sub> reduces the band gap of ZnCo<sub>2</sub>O<sub>4</sub> while increasing the DOS near the Fermi level compared to pristine ZnCo<sub>2</sub>O<sub>4</sub>. Furthermore, the specific capacitance of reduced ZnCo<sub>2</sub>O<sub>4</sub> is nearly double that of its unmodified counterpart. This straightforward and practical approach significantly enhances both conductivity and specific capacitance in metal oxides, making it applicable to other similar materials.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04347-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Formation of surfaces oxide vacancies in porous ZnCo2O4 nanoflowers for enhanced energy storage performance\",\"authors\":\"Deyang Zhang,&nbsp;Binhe Feng,&nbsp;Wenbo Guo,&nbsp;Jinbing Cheng,&nbsp;Kangwen Qiu,&nbsp;Ying Guo\",\"doi\":\"10.1186/s11671-025-04347-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A cost-effective and large-scale method for synthesizing ZnCo<sub>2</sub>O<sub>4</sub> nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCo<sub>2</sub>O<sub>4</sub> nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCo<sub>2</sub>O<sub>4</sub> are examined using density functional theory, revealing that treatment with NaBH<sub>4</sub> reduces the band gap of ZnCo<sub>2</sub>O<sub>4</sub> while increasing the DOS near the Fermi level compared to pristine ZnCo<sub>2</sub>O<sub>4</sub>. Furthermore, the specific capacitance of reduced ZnCo<sub>2</sub>O<sub>4</sub> is nearly double that of its unmodified counterpart. This straightforward and practical approach significantly enhances both conductivity and specific capacitance in metal oxides, making it applicable to other similar materials.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04347-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04347-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04347-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种经济、大规模合成具有表面氧空位的ZnCo2O4纳米花作为超级电容器电极材料的方法。通过x射线光电子能谱(XPS)证实了ZnCo2O4纳米花表面存在氧空位。利用密度函数理论对ZnCo2O4的能带和态密度(DOS)进行了研究,结果表明,与原始ZnCo2O4相比,NaBH4处理减小了ZnCo2O4的带隙,同时增加了ZnCo2O4在费米能级附近的DOS。此外,还原后的ZnCo2O4的比电容几乎是未经修饰的ZnCo2O4的两倍。这种简单实用的方法大大提高了金属氧化物的电导率和比电容,使其适用于其他类似材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation of surfaces oxide vacancies in porous ZnCo2O4 nanoflowers for enhanced energy storage performance

A cost-effective and large-scale method for synthesizing ZnCo2O4 nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCo2O4 nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCo2O4 are examined using density functional theory, revealing that treatment with NaBH4 reduces the band gap of ZnCo2O4 while increasing the DOS near the Fermi level compared to pristine ZnCo2O4. Furthermore, the specific capacitance of reduced ZnCo2O4 is nearly double that of its unmodified counterpart. This straightforward and practical approach significantly enhances both conductivity and specific capacitance in metal oxides, making it applicable to other similar materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信