{"title":"超薄层状双氢氧化物纳米片用于生产具有增强耐用性的多功能无酸纸","authors":"Wenzhuo Xia, Sinong Wang, Kaige Hou and Yi Tang","doi":"10.1039/D5QM00533G","DOIUrl":null,"url":null,"abstract":"<p >Paper—an essential carrier for information dissemination and the inheritance of civilization—holds significant importance in both daily life and specific applications. Nevertheless, the acidification of paper reduces its mechanical strength, restricts its functionality, and considerably shortens its service life. In this research, a handmade acid-free paper (HMAP) with an initial pH of 7–8 was prepared by incorporating ultrathin magnesium–aluminum layered double hydroxide (LDH) nanosheets as a filler in the paper preparation process. The Mg–Al LDH nanosheets, with an average layer thickness of about 8 nm, were synthesized <em>via</em> a one-step surfactant-assisted hydrothermal method. Simultaneously, the HMAP exhibits the advantages of long service life and acid resistance after a prolonged accelerated aging experiment (two months), maintaining a pH above 6. Additionally, the HMAP also possesses potential application value in some domains such as flame retardancy and adsorption. This work substantiates the feasibility of ultrathin LDH as a paper filler and broadens its prospects in the preparation of acid-free long-life paper.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 18","pages":" 2820-2831"},"PeriodicalIF":6.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin layered double hydroxide nanosheets for the production of multifunctional acid-free papers with enhanced durability\",\"authors\":\"Wenzhuo Xia, Sinong Wang, Kaige Hou and Yi Tang\",\"doi\":\"10.1039/D5QM00533G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Paper—an essential carrier for information dissemination and the inheritance of civilization—holds significant importance in both daily life and specific applications. Nevertheless, the acidification of paper reduces its mechanical strength, restricts its functionality, and considerably shortens its service life. In this research, a handmade acid-free paper (HMAP) with an initial pH of 7–8 was prepared by incorporating ultrathin magnesium–aluminum layered double hydroxide (LDH) nanosheets as a filler in the paper preparation process. The Mg–Al LDH nanosheets, with an average layer thickness of about 8 nm, were synthesized <em>via</em> a one-step surfactant-assisted hydrothermal method. Simultaneously, the HMAP exhibits the advantages of long service life and acid resistance after a prolonged accelerated aging experiment (two months), maintaining a pH above 6. Additionally, the HMAP also possesses potential application value in some domains such as flame retardancy and adsorption. This work substantiates the feasibility of ultrathin LDH as a paper filler and broadens its prospects in the preparation of acid-free long-life paper.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 18\",\"pages\":\" 2820-2831\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00533g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00533g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrathin layered double hydroxide nanosheets for the production of multifunctional acid-free papers with enhanced durability
Paper—an essential carrier for information dissemination and the inheritance of civilization—holds significant importance in both daily life and specific applications. Nevertheless, the acidification of paper reduces its mechanical strength, restricts its functionality, and considerably shortens its service life. In this research, a handmade acid-free paper (HMAP) with an initial pH of 7–8 was prepared by incorporating ultrathin magnesium–aluminum layered double hydroxide (LDH) nanosheets as a filler in the paper preparation process. The Mg–Al LDH nanosheets, with an average layer thickness of about 8 nm, were synthesized via a one-step surfactant-assisted hydrothermal method. Simultaneously, the HMAP exhibits the advantages of long service life and acid resistance after a prolonged accelerated aging experiment (two months), maintaining a pH above 6. Additionally, the HMAP also possesses potential application value in some domains such as flame retardancy and adsorption. This work substantiates the feasibility of ultrathin LDH as a paper filler and broadens its prospects in the preparation of acid-free long-life paper.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.