Penghui Yan , Hong Peng , Hesamoddin Rabiee , Lei Ge , Yilun Weng , Beibei Ma , Juntao Wang , Muxina Konarova , Guangyu Zhao , Eric M. Kennedy , Zhonghua Zhu , Michael Stockenhuber
{"title":"可持续生物燃料生产中木质纤维素生物质热解和催化升级的研究进展:工艺设计策略和反应原理","authors":"Penghui Yan , Hong Peng , Hesamoddin Rabiee , Lei Ge , Yilun Weng , Beibei Ma , Juntao Wang , Muxina Konarova , Guangyu Zhao , Eric M. Kennedy , Zhonghua Zhu , Michael Stockenhuber","doi":"10.1039/d5gc02199e","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass pyrolysis offers a promising route toward renewable fuels and chemicals, significantly reducing reliance on fossil-based resources. However, conventional pyrolysis produces bio-oils rich in oxygen, resulting in undesirable properties such as high acidity, poor thermal stability, corrosiveness, and excessive water content, which complicate downstream upgrading. To overcome these challenges, various upstream (<em>e.g.</em>, modified fast pyrolysis, catalytic pyrolysis, catalytic hydropyrolysis, <em>etc</em>.) and downstream (<em>e.g.</em>, hydrodeoxygenation, catalytic cracking, esterification) strategies have been developed to efficiently remove oxygen and enhance bio-oil quality. Although substantial research has addressed these methods individually, comprehensive reviews that examine their collective impacts on bio-oil properties and catalyst performance remain limited. Furthermore, while common model compounds like guaiacol and phenol are frequently studied, real biocrudes contain complex mixtures of bulky polyaromatic hydrocarbons (PAHs), significantly accelerating catalyst deactivation, a critical yet often overlooked issue. This review critically assesses recent advances in biomass pyrolysis techniques and catalytic upgrading strategies, emphasizing the roles of bifunctional catalysts and hydrogen donors in minimizing coke formation, prolonging catalyst lifetime, and enhancing bio-oil quality. Catalytic hydropyrolysis is highlighted as an effective single-step method for generating high-quality hydrocarbons directly from biomass. Additionally, we underscore the importance of employing realistic mixed-model compounds (phenolics and PAHs) and continuous-flow reactor conditions to accurately represent industrial processes and catalyst deactivation mechanisms. Finally, key research gaps and scale-up challenges, including catalyst stability, product selectivity, hydrogen requirements, scalability, and techno-economic considerations, are identified, providing clear directions for future research. By integrating knowledge across pyrolysis and upgrading strategies, this review aims to guide the development of more efficient, economically viable, and sustainable pathways toward commercial biofuel production.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 35","pages":"Pages 10444-10477"},"PeriodicalIF":9.2000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in lignocellulosic biomass pyrolysis and catalytic upgrading for sustainable biofuel production: process design strategies and reaction rationales\",\"authors\":\"Penghui Yan , Hong Peng , Hesamoddin Rabiee , Lei Ge , Yilun Weng , Beibei Ma , Juntao Wang , Muxina Konarova , Guangyu Zhao , Eric M. Kennedy , Zhonghua Zhu , Michael Stockenhuber\",\"doi\":\"10.1039/d5gc02199e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomass pyrolysis offers a promising route toward renewable fuels and chemicals, significantly reducing reliance on fossil-based resources. However, conventional pyrolysis produces bio-oils rich in oxygen, resulting in undesirable properties such as high acidity, poor thermal stability, corrosiveness, and excessive water content, which complicate downstream upgrading. To overcome these challenges, various upstream (<em>e.g.</em>, modified fast pyrolysis, catalytic pyrolysis, catalytic hydropyrolysis, <em>etc</em>.) and downstream (<em>e.g.</em>, hydrodeoxygenation, catalytic cracking, esterification) strategies have been developed to efficiently remove oxygen and enhance bio-oil quality. Although substantial research has addressed these methods individually, comprehensive reviews that examine their collective impacts on bio-oil properties and catalyst performance remain limited. Furthermore, while common model compounds like guaiacol and phenol are frequently studied, real biocrudes contain complex mixtures of bulky polyaromatic hydrocarbons (PAHs), significantly accelerating catalyst deactivation, a critical yet often overlooked issue. This review critically assesses recent advances in biomass pyrolysis techniques and catalytic upgrading strategies, emphasizing the roles of bifunctional catalysts and hydrogen donors in minimizing coke formation, prolonging catalyst lifetime, and enhancing bio-oil quality. Catalytic hydropyrolysis is highlighted as an effective single-step method for generating high-quality hydrocarbons directly from biomass. Additionally, we underscore the importance of employing realistic mixed-model compounds (phenolics and PAHs) and continuous-flow reactor conditions to accurately represent industrial processes and catalyst deactivation mechanisms. Finally, key research gaps and scale-up challenges, including catalyst stability, product selectivity, hydrogen requirements, scalability, and techno-economic considerations, are identified, providing clear directions for future research. By integrating knowledge across pyrolysis and upgrading strategies, this review aims to guide the development of more efficient, economically viable, and sustainable pathways toward commercial biofuel production.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"27 35\",\"pages\":\"Pages 10444-10477\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926225006843\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225006843","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advances in lignocellulosic biomass pyrolysis and catalytic upgrading for sustainable biofuel production: process design strategies and reaction rationales
Biomass pyrolysis offers a promising route toward renewable fuels and chemicals, significantly reducing reliance on fossil-based resources. However, conventional pyrolysis produces bio-oils rich in oxygen, resulting in undesirable properties such as high acidity, poor thermal stability, corrosiveness, and excessive water content, which complicate downstream upgrading. To overcome these challenges, various upstream (e.g., modified fast pyrolysis, catalytic pyrolysis, catalytic hydropyrolysis, etc.) and downstream (e.g., hydrodeoxygenation, catalytic cracking, esterification) strategies have been developed to efficiently remove oxygen and enhance bio-oil quality. Although substantial research has addressed these methods individually, comprehensive reviews that examine their collective impacts on bio-oil properties and catalyst performance remain limited. Furthermore, while common model compounds like guaiacol and phenol are frequently studied, real biocrudes contain complex mixtures of bulky polyaromatic hydrocarbons (PAHs), significantly accelerating catalyst deactivation, a critical yet often overlooked issue. This review critically assesses recent advances in biomass pyrolysis techniques and catalytic upgrading strategies, emphasizing the roles of bifunctional catalysts and hydrogen donors in minimizing coke formation, prolonging catalyst lifetime, and enhancing bio-oil quality. Catalytic hydropyrolysis is highlighted as an effective single-step method for generating high-quality hydrocarbons directly from biomass. Additionally, we underscore the importance of employing realistic mixed-model compounds (phenolics and PAHs) and continuous-flow reactor conditions to accurately represent industrial processes and catalyst deactivation mechanisms. Finally, key research gaps and scale-up challenges, including catalyst stability, product selectivity, hydrogen requirements, scalability, and techno-economic considerations, are identified, providing clear directions for future research. By integrating knowledge across pyrolysis and upgrading strategies, this review aims to guide the development of more efficient, economically viable, and sustainable pathways toward commercial biofuel production.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.