车辆到一切的异构联邦学习:特征原型聚合和生成反馈机制

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xianhui Liu;Jianle Liu;Yingyao Zhang;Ning Jia;Chenlin Zhu
{"title":"车辆到一切的异构联邦学习:特征原型聚合和生成反馈机制","authors":"Xianhui Liu;Jianle Liu;Yingyao Zhang;Ning Jia;Chenlin Zhu","doi":"10.1109/OJVT.2025.3594030","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of Vehicle-to-Everything (V2X) technology, there is a growing demand for collaborative perception among vehicles and multimodal devices (e.g., roadside units, pedestrian terminals). However, traditional centralized learning and federated learning (FL) face challenges in model convergence and performance degradation due to non-IID data distribution, privacy protection requirements, and communication bandwidth constraints among massive heterogeneous devices in V2X scenarios. To address these issues, this paper proposes a heterogeneous federated learning framework based on feature prototype alignment and generative knowledge transfer, enabling efficient and secure cross-device collaborative learning. The framework employs dynamic edge-enhanced contrastive learning on the server side to generate trainable global feature prototypes. These prototypes are subsequently decoded into composite images through a pre-trained generative adversarial network, achieving lightweight privacy-preserving knowledge transfer. Experimental results on CIFAR-10, CIFAR-100, and BelgiumTSC datasets demonstrate that our method achieves significant accuracy improvements compared with baseline approaches such as FedDistill and FedTGP. This study establishes a novel theoretical framework and technical pathway for collaborative learning in V2X environments that effectively balances privacy protection with model performance.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2332-2342"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11103507","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Federated Learning for Vehicle-to-Everything: Feature Prototype Aggregation and Generative Feedback Mechanism\",\"authors\":\"Xianhui Liu;Jianle Liu;Yingyao Zhang;Ning Jia;Chenlin Zhu\",\"doi\":\"10.1109/OJVT.2025.3594030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid advancement of Vehicle-to-Everything (V2X) technology, there is a growing demand for collaborative perception among vehicles and multimodal devices (e.g., roadside units, pedestrian terminals). However, traditional centralized learning and federated learning (FL) face challenges in model convergence and performance degradation due to non-IID data distribution, privacy protection requirements, and communication bandwidth constraints among massive heterogeneous devices in V2X scenarios. To address these issues, this paper proposes a heterogeneous federated learning framework based on feature prototype alignment and generative knowledge transfer, enabling efficient and secure cross-device collaborative learning. The framework employs dynamic edge-enhanced contrastive learning on the server side to generate trainable global feature prototypes. These prototypes are subsequently decoded into composite images through a pre-trained generative adversarial network, achieving lightweight privacy-preserving knowledge transfer. Experimental results on CIFAR-10, CIFAR-100, and BelgiumTSC datasets demonstrate that our method achieves significant accuracy improvements compared with baseline approaches such as FedDistill and FedTGP. This study establishes a novel theoretical framework and technical pathway for collaborative learning in V2X environments that effectively balances privacy protection with model performance.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"2332-2342\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11103507\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11103507/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11103507/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着车联网(V2X)技术的快速发展,车辆和多模式设备(如路边单元、行人终端)之间的协同感知需求日益增长。然而,在V2X场景下,由于大量异构设备之间的非iid数据分布、隐私保护需求和通信带宽限制,传统的集中式学习和联邦学习(FL)面临模型收敛和性能下降的挑战。为了解决这些问题,本文提出了一种基于特征原型对齐和生成知识转移的异构联邦学习框架,实现了高效、安全的跨设备协作学习。该框架在服务器端使用动态边缘增强对比学习来生成可训练的全局特征原型。这些原型随后通过预训练的生成对抗网络解码为合成图像,实现轻量级的隐私保护知识转移。在CIFAR-10、CIFAR-100和BelgiumTSC数据集上的实验结果表明,与fedditill和FedTGP等基线方法相比,我们的方法取得了显著的精度提高。本研究为V2X环境下的协同学习建立了新的理论框架和技术路径,有效地平衡了隐私保护与模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Federated Learning for Vehicle-to-Everything: Feature Prototype Aggregation and Generative Feedback Mechanism
With the rapid advancement of Vehicle-to-Everything (V2X) technology, there is a growing demand for collaborative perception among vehicles and multimodal devices (e.g., roadside units, pedestrian terminals). However, traditional centralized learning and federated learning (FL) face challenges in model convergence and performance degradation due to non-IID data distribution, privacy protection requirements, and communication bandwidth constraints among massive heterogeneous devices in V2X scenarios. To address these issues, this paper proposes a heterogeneous federated learning framework based on feature prototype alignment and generative knowledge transfer, enabling efficient and secure cross-device collaborative learning. The framework employs dynamic edge-enhanced contrastive learning on the server side to generate trainable global feature prototypes. These prototypes are subsequently decoded into composite images through a pre-trained generative adversarial network, achieving lightweight privacy-preserving knowledge transfer. Experimental results on CIFAR-10, CIFAR-100, and BelgiumTSC datasets demonstrate that our method achieves significant accuracy improvements compared with baseline approaches such as FedDistill and FedTGP. This study establishes a novel theoretical framework and technical pathway for collaborative learning in V2X environments that effectively balances privacy protection with model performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信