揭示微生物脱盐电池中多离子去除的协同机制:离子转移、电化学行为和微生物反应

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Chongtao Liu , Ran Ju , Chunxiao Han , Zhuangzhuang Liu , Yangyang Li , Xiaomei Jiang , Ling Wang , Yunfan Yang , Houkai Wu , Xiuping Tao
{"title":"揭示微生物脱盐电池中多离子去除的协同机制:离子转移、电化学行为和微生物反应","authors":"Chongtao Liu ,&nbsp;Ran Ju ,&nbsp;Chunxiao Han ,&nbsp;Zhuangzhuang Liu ,&nbsp;Yangyang Li ,&nbsp;Xiaomei Jiang ,&nbsp;Ling Wang ,&nbsp;Yunfan Yang ,&nbsp;Houkai Wu ,&nbsp;Xiuping Tao","doi":"10.1016/j.biortech.2025.133281","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions − PMDC, divalent cations − CMDC and anions − AMDC. Results showed desalination efficiencies exceeding 97 % among all bioreactors, with CMDC outperforming AMDC yet lower than PMDC. The transmembrane behavior of ions with varying charges was regulated by electric field gradients, with cation migration hierarchies following Na<sup>+</sup> &gt; Ca<sup>2+</sup> &gt; Mg<sup>2+</sup> and anion transfer prioritizing CO<sub>3</sub><sup>2–</sup> &gt; SO<sub>4</sub><sup>2-</sup> &gt; Cl<sup>-</sup>. A mathematical model further elucidated variations in ion diffusion and salt transfer. The CMDC exhibited peak power density (927 mW/m<sup>2</sup>), achieving 1.57 and 1.99 times that of PMDC and AMDC, due to reduced ohmic resistance and improved cathodic kinetics. Prolonged operation exposed critical limitations: multivalent cations induced 21.4 % desalination efficiency loss and 38.3 % power decline via membrane scaling and biofouling accumulation. Microbial community analysis highlighted <em>Lentimicrobium</em> (26.7 %), <em>Desulfomicrobium</em> (12.3 %), and <em>Oscillochloris</em> (9.2 %) as dominant electroactive genera, with their synergistic interactions and functional metabolic pathways (carbon fixation, nitrogen metabolism, and sulfur reduction) critically enhancing organic degradation and bioelectricity generation in multi-ionic MDCs. This comprehensive study bridges critical gaps in understanding electrochemical and microbial responses in MDCs treating hypersaline wastewater, advancing their practical implementation.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"439 ","pages":"Article 133281"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the synergistic mechanisms of multi-ionic removal in microbial desalination cells: Ion transfer, electrochemical behavior and microbial response\",\"authors\":\"Chongtao Liu ,&nbsp;Ran Ju ,&nbsp;Chunxiao Han ,&nbsp;Zhuangzhuang Liu ,&nbsp;Yangyang Li ,&nbsp;Xiaomei Jiang ,&nbsp;Ling Wang ,&nbsp;Yunfan Yang ,&nbsp;Houkai Wu ,&nbsp;Xiuping Tao\",\"doi\":\"10.1016/j.biortech.2025.133281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions − PMDC, divalent cations − CMDC and anions − AMDC. Results showed desalination efficiencies exceeding 97 % among all bioreactors, with CMDC outperforming AMDC yet lower than PMDC. The transmembrane behavior of ions with varying charges was regulated by electric field gradients, with cation migration hierarchies following Na<sup>+</sup> &gt; Ca<sup>2+</sup> &gt; Mg<sup>2+</sup> and anion transfer prioritizing CO<sub>3</sub><sup>2–</sup> &gt; SO<sub>4</sub><sup>2-</sup> &gt; Cl<sup>-</sup>. A mathematical model further elucidated variations in ion diffusion and salt transfer. The CMDC exhibited peak power density (927 mW/m<sup>2</sup>), achieving 1.57 and 1.99 times that of PMDC and AMDC, due to reduced ohmic resistance and improved cathodic kinetics. Prolonged operation exposed critical limitations: multivalent cations induced 21.4 % desalination efficiency loss and 38.3 % power decline via membrane scaling and biofouling accumulation. Microbial community analysis highlighted <em>Lentimicrobium</em> (26.7 %), <em>Desulfomicrobium</em> (12.3 %), and <em>Oscillochloris</em> (9.2 %) as dominant electroactive genera, with their synergistic interactions and functional metabolic pathways (carbon fixation, nitrogen metabolism, and sulfur reduction) critically enhancing organic degradation and bioelectricity generation in multi-ionic MDCs. This comprehensive study bridges critical gaps in understanding electrochemical and microbial responses in MDCs treating hypersaline wastewater, advancing their practical implementation.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"439 \",\"pages\":\"Article 133281\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425012489\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425012489","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

微生物脱盐电池(MDCs)传统上采用简化的NaCl溶液作为同步脱盐和生物能源回收的给水。然而,MDCs从含盐废水中去除复杂多离子的具体机制仍然不清楚。本研究深入研究了三种不同构型的离子迁移、生物电化学动力学和微生物生态响应:单价离子- PMDC、二价阳离子- CMDC和阴离子- AMDC。结果表明,所有生物反应器的脱盐效率均超过97%,其中CMDC优于AMDC,但低于PMDC。不同电荷离子的跨膜行为受电场梯度调控,阳离子迁移顺序依次为Na+ >; Ca2+ > Mg2+,阴离子转移顺序依次为CO32 - >; SO42- > Cl-。一个数学模型进一步阐明了离子扩散和盐转移的变化。由于降低了欧姆电阻和改善了阴极动力学,CMDC的峰值功率密度为927 mW/m2,分别是PMDC和AMDC的1.57和1.99倍。长时间的操作暴露出关键的限制:多价阳离子通过膜结垢和生物污垢积累导致21.4%的脱盐效率损失和38.3%的功率下降。微生物群落分析显示Lentimicrobium(26.7%)、desulfomicroum(12.3%)和Oscillochloris(9.2%)是主要的电活性属,它们的协同作用和功能代谢途径(碳固定、氮代谢和硫还原)对多离子MDCs的有机降解和生物发电至关重要。这项全面的研究弥补了理解MDCs处理高盐废水的电化学和微生物反应的关键空白,促进了它们的实际实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the synergistic mechanisms of multi-ionic removal in microbial desalination cells: Ion transfer, electrochemical behavior and microbial response

Unveiling the synergistic mechanisms of multi-ionic removal in microbial desalination cells: Ion transfer, electrochemical behavior and microbial response
Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions − PMDC, divalent cations − CMDC and anions − AMDC. Results showed desalination efficiencies exceeding 97 % among all bioreactors, with CMDC outperforming AMDC yet lower than PMDC. The transmembrane behavior of ions with varying charges was regulated by electric field gradients, with cation migration hierarchies following Na+ > Ca2+ > Mg2+ and anion transfer prioritizing CO32– > SO42- > Cl-. A mathematical model further elucidated variations in ion diffusion and salt transfer. The CMDC exhibited peak power density (927 mW/m2), achieving 1.57 and 1.99 times that of PMDC and AMDC, due to reduced ohmic resistance and improved cathodic kinetics. Prolonged operation exposed critical limitations: multivalent cations induced 21.4 % desalination efficiency loss and 38.3 % power decline via membrane scaling and biofouling accumulation. Microbial community analysis highlighted Lentimicrobium (26.7 %), Desulfomicrobium (12.3 %), and Oscillochloris (9.2 %) as dominant electroactive genera, with their synergistic interactions and functional metabolic pathways (carbon fixation, nitrogen metabolism, and sulfur reduction) critically enhancing organic degradation and bioelectricity generation in multi-ionic MDCs. This comprehensive study bridges critical gaps in understanding electrochemical and microbial responses in MDCs treating hypersaline wastewater, advancing their practical implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信