Jacob Wekalao , Hussein A. Elsayed , Ahmed Mehaney , Haifa E. Alfassam , Mostafa R. Abukhadra , Wail Al Zoubi , Amuthakkannan Rajakannu , K. Vijayalakshmi
{"title":"基于无标记石墨烯表面等离子体共振传感器的高级男性生育能力评估与多项式回归行为预测","authors":"Jacob Wekalao , Hussein A. Elsayed , Ahmed Mehaney , Haifa E. Alfassam , Mostafa R. Abukhadra , Wail Al Zoubi , Amuthakkannan Rajakannu , K. Vijayalakshmi","doi":"10.1016/j.sbsr.2025.100877","DOIUrl":null,"url":null,"abstract":"<div><div>Male infertility affects approximately 15 % of reproductive-age couples globally, with male factors contributing to roughly 50 % of infertility cases, creating an urgent need for advanced, accessible diagnostic technologies for semen analysis. Current sperm assessment protocols rely predominantly on conventional light microscopy and Computer-Assisted Sperm Analysis (CASA) systems, which suffer from subjective interpretation, high costs, and limited accessibility in resource-constrained settings. This study presents a simple graphene-based Surface Plasmon Resonance (SPR) biosensor featuring a simple resonator architecture optimized for ultrasensitive sperm detection through label-free, real-time analysis. The electromagnetic analysis using COMSOL Multiphysics 6.3 demonstrates exceptional sensitivity ranging from 118 GHzRIU<sup>−1</sup> to 5000 GHzRIU<sup>−1</sup> across refractive indices of 1.33–1.3461 RIU, with a maximum figure of merit of 68.493 RIU<sup>−1</sup> and detection limits as low as 0.028 RIU. Machine learning optimization using polynomial regression achieved prediction accuracies of 87–91 % (R<sup>2</sup> values of 94–100 %) across critical operational parameters including graphene chemical potential (0.1–0.9 eV), geometric variations, and angular dependencies (0–80°), validating the sensor's robust performance for clinical sperm analysis applications.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100877"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-free graphene-based surface plasmon resonance sensor for advanced male fertility evaluation with behavior prediction via polynomial regression\",\"authors\":\"Jacob Wekalao , Hussein A. Elsayed , Ahmed Mehaney , Haifa E. Alfassam , Mostafa R. Abukhadra , Wail Al Zoubi , Amuthakkannan Rajakannu , K. Vijayalakshmi\",\"doi\":\"10.1016/j.sbsr.2025.100877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Male infertility affects approximately 15 % of reproductive-age couples globally, with male factors contributing to roughly 50 % of infertility cases, creating an urgent need for advanced, accessible diagnostic technologies for semen analysis. Current sperm assessment protocols rely predominantly on conventional light microscopy and Computer-Assisted Sperm Analysis (CASA) systems, which suffer from subjective interpretation, high costs, and limited accessibility in resource-constrained settings. This study presents a simple graphene-based Surface Plasmon Resonance (SPR) biosensor featuring a simple resonator architecture optimized for ultrasensitive sperm detection through label-free, real-time analysis. The electromagnetic analysis using COMSOL Multiphysics 6.3 demonstrates exceptional sensitivity ranging from 118 GHzRIU<sup>−1</sup> to 5000 GHzRIU<sup>−1</sup> across refractive indices of 1.33–1.3461 RIU, with a maximum figure of merit of 68.493 RIU<sup>−1</sup> and detection limits as low as 0.028 RIU. Machine learning optimization using polynomial regression achieved prediction accuracies of 87–91 % (R<sup>2</sup> values of 94–100 %) across critical operational parameters including graphene chemical potential (0.1–0.9 eV), geometric variations, and angular dependencies (0–80°), validating the sensor's robust performance for clinical sperm analysis applications.</div></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"50 \",\"pages\":\"Article 100877\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180425001436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425001436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Label-free graphene-based surface plasmon resonance sensor for advanced male fertility evaluation with behavior prediction via polynomial regression
Male infertility affects approximately 15 % of reproductive-age couples globally, with male factors contributing to roughly 50 % of infertility cases, creating an urgent need for advanced, accessible diagnostic technologies for semen analysis. Current sperm assessment protocols rely predominantly on conventional light microscopy and Computer-Assisted Sperm Analysis (CASA) systems, which suffer from subjective interpretation, high costs, and limited accessibility in resource-constrained settings. This study presents a simple graphene-based Surface Plasmon Resonance (SPR) biosensor featuring a simple resonator architecture optimized for ultrasensitive sperm detection through label-free, real-time analysis. The electromagnetic analysis using COMSOL Multiphysics 6.3 demonstrates exceptional sensitivity ranging from 118 GHzRIU−1 to 5000 GHzRIU−1 across refractive indices of 1.33–1.3461 RIU, with a maximum figure of merit of 68.493 RIU−1 and detection limits as low as 0.028 RIU. Machine learning optimization using polynomial regression achieved prediction accuracies of 87–91 % (R2 values of 94–100 %) across critical operational parameters including graphene chemical potential (0.1–0.9 eV), geometric variations, and angular dependencies (0–80°), validating the sensor's robust performance for clinical sperm analysis applications.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.