采用puma优化算法优化配电网的规模和配置,提高电压稳定指标,降低功率损耗

IF 3.3 Q2 MULTIDISCIPLINARY SCIENCES
Abeer Mohammed Alazab, Hamdy Kanaan, Mohammed I. Elsayed
{"title":"采用puma优化算法优化配电网的规模和配置,提高电压稳定指标,降低功率损耗","authors":"Abeer Mohammed Alazab,&nbsp;Hamdy Kanaan,&nbsp;Mohammed I. Elsayed","doi":"10.1016/j.sciaf.2025.e02920","DOIUrl":null,"url":null,"abstract":"<div><div>The incorporation of Distributed Generation (DG) units into radial distribution networks (RDNs) is a proven strategy to mitigate power losses and enhance voltage stability. However, the efficacy of DG integration heavily depends on optimal placement and sizing, which remains a complex optimization challenge. This study introduces the novel Puma Optimization Algorithm (POA) to address the optimal location of three DG types—Type-1 (active power), Type-2 (reactive power), and Type-3 (active and reactive power)—in IEEE 33 and 69-buses RDNs. POA, drawing inspiration from the foraging behavior of pumas, dynamically balances exploration and exploitation to reduce power losses and enhance the Voltage Stability Index (VSI). Results demonstrate POA’s superior performance compared to established algorithms like BSOA, CSFS, GA, and hybrid techniques. For the IEEE 33-bus, POA achieved a 48.77 % loss reduction with Type-1 DG (single unit), 65.83 % with multiple Type-1 units, and 94.45 % with Type-3 units, alongside significant VSI improvements (up to 0.9705 pu). In the IEEE 69-bus, POA reduced losses by 80.11 % (Type-1) and 80.05 % (Type-3), with VSI reaching 0.9772 pu. Type-3 DG consistently outperformed other types, underscoring its dual-power capability for stability enhancement. The study validates POA as a robust tool for DG location, offering utilities a scalable solution to enhance grid efficiency and reliability. Key contributions include a comparative analysis of DG types, a novel metaheuristic approach, and actionable insights for real-world deployment.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"29 ","pages":"Article e02920"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing voltage stability index and reducing power loss through optimal sizing and placing of distribution generation types using puma optimization algorithm\",\"authors\":\"Abeer Mohammed Alazab,&nbsp;Hamdy Kanaan,&nbsp;Mohammed I. Elsayed\",\"doi\":\"10.1016/j.sciaf.2025.e02920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The incorporation of Distributed Generation (DG) units into radial distribution networks (RDNs) is a proven strategy to mitigate power losses and enhance voltage stability. However, the efficacy of DG integration heavily depends on optimal placement and sizing, which remains a complex optimization challenge. This study introduces the novel Puma Optimization Algorithm (POA) to address the optimal location of three DG types—Type-1 (active power), Type-2 (reactive power), and Type-3 (active and reactive power)—in IEEE 33 and 69-buses RDNs. POA, drawing inspiration from the foraging behavior of pumas, dynamically balances exploration and exploitation to reduce power losses and enhance the Voltage Stability Index (VSI). Results demonstrate POA’s superior performance compared to established algorithms like BSOA, CSFS, GA, and hybrid techniques. For the IEEE 33-bus, POA achieved a 48.77 % loss reduction with Type-1 DG (single unit), 65.83 % with multiple Type-1 units, and 94.45 % with Type-3 units, alongside significant VSI improvements (up to 0.9705 pu). In the IEEE 69-bus, POA reduced losses by 80.11 % (Type-1) and 80.05 % (Type-3), with VSI reaching 0.9772 pu. Type-3 DG consistently outperformed other types, underscoring its dual-power capability for stability enhancement. The study validates POA as a robust tool for DG location, offering utilities a scalable solution to enhance grid efficiency and reliability. Key contributions include a comparative analysis of DG types, a novel metaheuristic approach, and actionable insights for real-world deployment.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"29 \",\"pages\":\"Article e02920\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227625003904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625003904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将分布式发电(DG)机组并入径向配电网(rdn)是一种行之有效的策略,可以减轻电力损耗,提高电压稳定性。然而,DG集成的有效性在很大程度上取决于最优的位置和尺寸,这仍然是一个复杂的优化挑战。本研究引入新的彪马优化算法(POA)来解决三种DG类型-1型(有功),2型(无功)和3型(有功和无功)-在IEEE 33和69总线rdn中的最优位置。POA从美洲狮的觅食行为中汲取灵感,动态平衡了勘探和开采,以减少电力损失并提高电压稳定指数(VSI)。结果表明,与BSOA、CSFS、GA和混合技术等现有算法相比,POA具有优越的性能。对于IEEE 33-总线,POA在1型DG(单个单元)下实现了48.77%的损耗降低,在多个1型DG下实现了65.83%的损耗降低,在3型DG下实现了94.45%的损耗降低,同时VSI显著提高(高达0.9705 pu)。在IEEE 69总线中,POA降低了80.11% (Type-1)和80.05% (Type-3)的损耗,VSI达到0.9772 pu。3型DG的性能一直优于其他类型,突出了其增强稳定性的双功率能力。该研究验证了POA作为DG定位的强大工具,为公用事业提供了可扩展的解决方案,以提高电网的效率和可靠性。主要贡献包括对DG类型的比较分析、一种新颖的元启发式方法以及对实际部署的可操作见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing voltage stability index and reducing power loss through optimal sizing and placing of distribution generation types using puma optimization algorithm
The incorporation of Distributed Generation (DG) units into radial distribution networks (RDNs) is a proven strategy to mitigate power losses and enhance voltage stability. However, the efficacy of DG integration heavily depends on optimal placement and sizing, which remains a complex optimization challenge. This study introduces the novel Puma Optimization Algorithm (POA) to address the optimal location of three DG types—Type-1 (active power), Type-2 (reactive power), and Type-3 (active and reactive power)—in IEEE 33 and 69-buses RDNs. POA, drawing inspiration from the foraging behavior of pumas, dynamically balances exploration and exploitation to reduce power losses and enhance the Voltage Stability Index (VSI). Results demonstrate POA’s superior performance compared to established algorithms like BSOA, CSFS, GA, and hybrid techniques. For the IEEE 33-bus, POA achieved a 48.77 % loss reduction with Type-1 DG (single unit), 65.83 % with multiple Type-1 units, and 94.45 % with Type-3 units, alongside significant VSI improvements (up to 0.9705 pu). In the IEEE 69-bus, POA reduced losses by 80.11 % (Type-1) and 80.05 % (Type-3), with VSI reaching 0.9772 pu. Type-3 DG consistently outperformed other types, underscoring its dual-power capability for stability enhancement. The study validates POA as a robust tool for DG location, offering utilities a scalable solution to enhance grid efficiency and reliability. Key contributions include a comparative analysis of DG types, a novel metaheuristic approach, and actionable insights for real-world deployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信