ZnO@Bi2O3异质结构中通过化学发泡的界面电荷转移调节水锌镍电池

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jinyan Tang, Jingtian Tong, Hao He, Tianjian Xu, Jinzheng Yang, Dan Huang, Zhaoyong Chen, Junfei Duan
{"title":"ZnO@Bi2O3异质结构中通过化学发泡的界面电荷转移调节水锌镍电池","authors":"Jinyan Tang,&nbsp;Jingtian Tong,&nbsp;Hao He,&nbsp;Tianjian Xu,&nbsp;Jinzheng Yang,&nbsp;Dan Huang,&nbsp;Zhaoyong Chen,&nbsp;Junfei Duan","doi":"10.1016/j.jpcs.2025.113148","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-nickel batteries suffer from severe anode challenges including dendrite growth, self-corrosion, and hydrogen precipitation, which drastically limit their cycle life and performance. Herein, a novel chemical foaming strategy was proposed to scalably fabricate ZnO@Bi<sub>2</sub>O<sub>3</sub> heterostructures. ZnO nanocrystals (∼30–80 nm) intimately integrate with Bi<sub>2</sub>O<sub>3</sub> via chemically bonded heterointerfaces were prepared combined with thermal decomposition of zinc nitrate hexahydrate and the physical confinement of polyvinylpyrrolidone. Depth-profiling XPS analysis confirms that Bi<sub>2</sub>O<sub>3</sub> not only forms a permeable barrier against alkaline electrolyte penetration but also induces interfacial charge redistribution via Bi–O–Zn covalent bonding, which regulates Zn(OH)<sub>4</sub><sup>2−</sup> migration pathways and suppresses dendrite formation and electrode corrosion. The optimized ZnO@Bi<sub>2</sub>O<sub>3</sub>-M electrode delivers a coulombic efficiency of over 80 % after 600 cycles at 25 mA cm<sup>−2</sup>, accompanied by a specific capacity of 481.8 mAh g<sup>−1</sup>, and maintains 167.7 mAh g<sup>−1</sup> even at 60 mA cm<sup>−2</sup>. This study proposes a novel design strategy for high-performance aqueous zinc-nickel battery anode materials via interfacial engineering, coupled with a scalable synthesis route paving the way for industrial implementation.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113148"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial charge-transfer in ZnO@Bi2O3 heterostructures via chemical foaming regulates aqueous zinc–nickel batteries\",\"authors\":\"Jinyan Tang,&nbsp;Jingtian Tong,&nbsp;Hao He,&nbsp;Tianjian Xu,&nbsp;Jinzheng Yang,&nbsp;Dan Huang,&nbsp;Zhaoyong Chen,&nbsp;Junfei Duan\",\"doi\":\"10.1016/j.jpcs.2025.113148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous zinc-nickel batteries suffer from severe anode challenges including dendrite growth, self-corrosion, and hydrogen precipitation, which drastically limit their cycle life and performance. Herein, a novel chemical foaming strategy was proposed to scalably fabricate ZnO@Bi<sub>2</sub>O<sub>3</sub> heterostructures. ZnO nanocrystals (∼30–80 nm) intimately integrate with Bi<sub>2</sub>O<sub>3</sub> via chemically bonded heterointerfaces were prepared combined with thermal decomposition of zinc nitrate hexahydrate and the physical confinement of polyvinylpyrrolidone. Depth-profiling XPS analysis confirms that Bi<sub>2</sub>O<sub>3</sub> not only forms a permeable barrier against alkaline electrolyte penetration but also induces interfacial charge redistribution via Bi–O–Zn covalent bonding, which regulates Zn(OH)<sub>4</sub><sup>2−</sup> migration pathways and suppresses dendrite formation and electrode corrosion. The optimized ZnO@Bi<sub>2</sub>O<sub>3</sub>-M electrode delivers a coulombic efficiency of over 80 % after 600 cycles at 25 mA cm<sup>−2</sup>, accompanied by a specific capacity of 481.8 mAh g<sup>−1</sup>, and maintains 167.7 mAh g<sup>−1</sup> even at 60 mA cm<sup>−2</sup>. This study proposes a novel design strategy for high-performance aqueous zinc-nickel battery anode materials via interfacial engineering, coupled with a scalable synthesis route paving the way for industrial implementation.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 113148\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725006018\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725006018","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

含水锌镍电池面临着严峻的阳极挑战,包括枝晶生长、自腐蚀和氢沉淀,这极大地限制了它们的循环寿命和性能。本文提出了一种新的化学发泡策略,可大规模制备ZnO@Bi2O3异质结构。结合六水硝酸锌的热分解和聚乙烯吡咯烷酮的物理约束,制备了与Bi2O3紧密结合的ZnO纳米晶体(~ 30 ~ 80 nm)。深度剖面XPS分析证实,Bi2O3不仅对碱性电解质的渗透形成可渗透屏障,而且通过Bi-O-Zn共价键诱导界面电荷重新分布,从而调节Zn(OH)42−的迁移途径,抑制枝晶的形成和电极的腐蚀。优化后的ZnO@Bi2O3-M电极在25 mA cm−2下循环600次后,库仑效率超过80%,比容量为481.8 mAh g−1,即使在60 mA cm−2下也能保持167.7 mAh g−1。本研究提出了一种基于界面工程的高性能水性锌镍电池负极材料的新设计策略,并结合可扩展的合成路线为工业实施铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial charge-transfer in ZnO@Bi2O3 heterostructures via chemical foaming regulates aqueous zinc–nickel batteries
Aqueous zinc-nickel batteries suffer from severe anode challenges including dendrite growth, self-corrosion, and hydrogen precipitation, which drastically limit their cycle life and performance. Herein, a novel chemical foaming strategy was proposed to scalably fabricate ZnO@Bi2O3 heterostructures. ZnO nanocrystals (∼30–80 nm) intimately integrate with Bi2O3 via chemically bonded heterointerfaces were prepared combined with thermal decomposition of zinc nitrate hexahydrate and the physical confinement of polyvinylpyrrolidone. Depth-profiling XPS analysis confirms that Bi2O3 not only forms a permeable barrier against alkaline electrolyte penetration but also induces interfacial charge redistribution via Bi–O–Zn covalent bonding, which regulates Zn(OH)42− migration pathways and suppresses dendrite formation and electrode corrosion. The optimized ZnO@Bi2O3-M electrode delivers a coulombic efficiency of over 80 % after 600 cycles at 25 mA cm−2, accompanied by a specific capacity of 481.8 mAh g−1, and maintains 167.7 mAh g−1 even at 60 mA cm−2. This study proposes a novel design strategy for high-performance aqueous zinc-nickel battery anode materials via interfacial engineering, coupled with a scalable synthesis route paving the way for industrial implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信