{"title":"矩曲线上分形集合上具有傅里叶支撑的函数的lp可积性","authors":"Shengze Duan , Minh-Quy Pham , Donggeun Ryou","doi":"10.1016/j.jfa.2025.111185","DOIUrl":null,"url":null,"abstract":"<div><div>For <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, let <em>E</em> be a compact subset of the <em>d</em>-dimensional moment curve in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that <span><math><mi>N</mi><mo>(</mo><mi>E</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>≲</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo><</mo><mi>ε</mi><mo><</mo><mn>1</mn></math></span> where <span><math><mi>N</mi><mo>(</mo><mi>E</mi><mo>,</mo><mi>ε</mi><mo>)</mo></math></span> is the smallest number of <em>ε</em>-balls needed to cover <em>E</em>. We proved that if <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> with<span><span><span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mo>=</mo><mrow><mo>{</mo><mtable><mtr><mtd><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>d</mi><mo>+</mo><mn>2</mn><mi>α</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mtd><mtd><mi>d</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mn>4</mn></mrow><mrow><mi>α</mi></mrow></mfrac></mtd><mtd><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> and <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is supported on the set <em>E</em>, then <em>f</em> is identically zero. We also proved that the range of <em>p</em> is optimal by considering random Cantor sets on the moment curve. We extended the result of Guo, Iosevich, Zhang and Zorin-Kranich <span><span>[11]</span></span>, including the endpoint. We also considered applications of our results to the failure of the restriction estimates and Wiener Tauberian Theorem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111185"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp-integrability of functions with Fourier supports on fractal sets on the moment curve\",\"authors\":\"Shengze Duan , Minh-Quy Pham , Donggeun Ryou\",\"doi\":\"10.1016/j.jfa.2025.111185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, let <em>E</em> be a compact subset of the <em>d</em>-dimensional moment curve in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that <span><math><mi>N</mi><mo>(</mo><mi>E</mi><mo>,</mo><mi>ε</mi><mo>)</mo><mo>≲</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo><</mo><mi>ε</mi><mo><</mo><mn>1</mn></math></span> where <span><math><mi>N</mi><mo>(</mo><mi>E</mi><mo>,</mo><mi>ε</mi><mo>)</mo></math></span> is the smallest number of <em>ε</em>-balls needed to cover <em>E</em>. We proved that if <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> with<span><span><span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>:</mo><mo>=</mo><mrow><mo>{</mo><mtable><mtr><mtd><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>d</mi><mo>+</mo><mn>2</mn><mi>α</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mtd><mtd><mi>d</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mn>4</mn></mrow><mrow><mi>α</mi></mrow></mfrac></mtd><mtd><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> and <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is supported on the set <em>E</em>, then <em>f</em> is identically zero. We also proved that the range of <em>p</em> is optimal by considering random Cantor sets on the moment curve. We extended the result of Guo, Iosevich, Zhang and Zorin-Kranich <span><span>[11]</span></span>, including the endpoint. We also considered applications of our results to the failure of the restriction estimates and Wiener Tauberian Theorem.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 12\",\"pages\":\"Article 111185\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003672\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003672","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lp-integrability of functions with Fourier supports on fractal sets on the moment curve
For , let E be a compact subset of the d-dimensional moment curve in such that for where is the smallest number of ε-balls needed to cover E. We proved that if with and is supported on the set E, then f is identically zero. We also proved that the range of p is optimal by considering random Cantor sets on the moment curve. We extended the result of Guo, Iosevich, Zhang and Zorin-Kranich [11], including the endpoint. We also considered applications of our results to the failure of the restriction estimates and Wiener Tauberian Theorem.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis