提高平面通道性能的晶体制造技术

IF 1.4 3区 物理与天体物理 Q3 INSTRUMENTS & INSTRUMENTATION
Marco Romagnoni , Laura Bandiera , Nicola Canale , Stefano Carsi , Davide De Salvador , Pierluigi Fedeli , Vincenzo Guidi , Giulia Lezzani , Lorenzo Malagutti , Fulvio Mancarella , Andrea Mazzolari , Riccardo Negrello , Gianfranco Paternò , Michela Prest , Rita Rizzoli , Alessia Selmi , Francesco Sgarbossa , Alexei Sytov , Fabrizio Tamarri , Melissa Tamisari , Viktor Tikhomirov
{"title":"提高平面通道性能的晶体制造技术","authors":"Marco Romagnoni ,&nbsp;Laura Bandiera ,&nbsp;Nicola Canale ,&nbsp;Stefano Carsi ,&nbsp;Davide De Salvador ,&nbsp;Pierluigi Fedeli ,&nbsp;Vincenzo Guidi ,&nbsp;Giulia Lezzani ,&nbsp;Lorenzo Malagutti ,&nbsp;Fulvio Mancarella ,&nbsp;Andrea Mazzolari ,&nbsp;Riccardo Negrello ,&nbsp;Gianfranco Paternò ,&nbsp;Michela Prest ,&nbsp;Rita Rizzoli ,&nbsp;Alessia Selmi ,&nbsp;Francesco Sgarbossa ,&nbsp;Alexei Sytov ,&nbsp;Fabrizio Tamarri ,&nbsp;Melissa Tamisari ,&nbsp;Viktor Tikhomirov","doi":"10.1016/j.nima.2025.170979","DOIUrl":null,"url":null,"abstract":"<div><div>Bent crystals have emerged as innovative tools for manipulating high-energy particle beams, offering unparalleled precision in beam steering for accelerator physics. However, the practical application of these devices is hindered by nuclear dechanneling, limiting channeling efficiency to approximately 80%. The GALORE project addresses this limitation by introducing a novel bent crystal design featuring a microtrench structure. Acting as a crystalline lens, the microtrench minimizes nuclear interactions, thereby significantly enhancing channeling efficiency.</div><div>This paper details the fabrication process for these advanced bent crystals, utilizing high-purity silicon wafers and state-of-the-art micromachining techniques. A silicon nitride thin film induces controlled curvature, while Deep Reactive Ion Etching (DRIE) is employed to create the microtrench with sub-micron precision. Characterization studies confirm the structural integrity and channeling potential of the microstructures.</div><div>These results represent a significant milestone in the development of bent crystals capable of achieving near-ideal channeling efficiency—a breakthrough in crystal-assisted particle beam technology. This advancement holds the potential to revolutionize collimation systems, enhance fixed-target experiments, and shape the design of next-generation accelerators.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1082 ","pages":"Article 170979"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal fabrication techniques for enhanced performance in planar channeling\",\"authors\":\"Marco Romagnoni ,&nbsp;Laura Bandiera ,&nbsp;Nicola Canale ,&nbsp;Stefano Carsi ,&nbsp;Davide De Salvador ,&nbsp;Pierluigi Fedeli ,&nbsp;Vincenzo Guidi ,&nbsp;Giulia Lezzani ,&nbsp;Lorenzo Malagutti ,&nbsp;Fulvio Mancarella ,&nbsp;Andrea Mazzolari ,&nbsp;Riccardo Negrello ,&nbsp;Gianfranco Paternò ,&nbsp;Michela Prest ,&nbsp;Rita Rizzoli ,&nbsp;Alessia Selmi ,&nbsp;Francesco Sgarbossa ,&nbsp;Alexei Sytov ,&nbsp;Fabrizio Tamarri ,&nbsp;Melissa Tamisari ,&nbsp;Viktor Tikhomirov\",\"doi\":\"10.1016/j.nima.2025.170979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bent crystals have emerged as innovative tools for manipulating high-energy particle beams, offering unparalleled precision in beam steering for accelerator physics. However, the practical application of these devices is hindered by nuclear dechanneling, limiting channeling efficiency to approximately 80%. The GALORE project addresses this limitation by introducing a novel bent crystal design featuring a microtrench structure. Acting as a crystalline lens, the microtrench minimizes nuclear interactions, thereby significantly enhancing channeling efficiency.</div><div>This paper details the fabrication process for these advanced bent crystals, utilizing high-purity silicon wafers and state-of-the-art micromachining techniques. A silicon nitride thin film induces controlled curvature, while Deep Reactive Ion Etching (DRIE) is employed to create the microtrench with sub-micron precision. Characterization studies confirm the structural integrity and channeling potential of the microstructures.</div><div>These results represent a significant milestone in the development of bent crystals capable of achieving near-ideal channeling efficiency—a breakthrough in crystal-assisted particle beam technology. This advancement holds the potential to revolutionize collimation systems, enhance fixed-target experiments, and shape the design of next-generation accelerators.</div></div>\",\"PeriodicalId\":19359,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"volume\":\"1082 \",\"pages\":\"Article 170979\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168900225007818\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900225007818","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

弯曲晶体已经成为操纵高能粒子束的创新工具,为加速器物理提供了无与伦比的光束导向精度。然而,这些装置的实际应用受到核去沟道的阻碍,将沟道效率限制在约80%。GALORE项目通过引入一种具有微沟槽结构的新型弯曲晶体设计来解决这一限制。作为晶体透镜,微沟槽最大限度地减少了核相互作用,从而显著提高了通道效率。本文详细介绍了这些先进的弯曲晶体的制造过程,利用高纯度硅片和最先进的微加工技术。采用氮化硅薄膜诱导可控曲率,并采用深度反应离子刻蚀(Deep Reactive Ion Etching, DRIE)形成亚微米精度的微沟槽。表征研究证实了微结构的结构完整性和通道潜力。这些结果代表了能够实现接近理想通道效率的弯曲晶体发展的一个重要里程碑-晶体辅助粒子束技术的突破。这一进步有可能彻底改变准直系统,增强固定目标实验,并塑造下一代加速器的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystal fabrication techniques for enhanced performance in planar channeling
Bent crystals have emerged as innovative tools for manipulating high-energy particle beams, offering unparalleled precision in beam steering for accelerator physics. However, the practical application of these devices is hindered by nuclear dechanneling, limiting channeling efficiency to approximately 80%. The GALORE project addresses this limitation by introducing a novel bent crystal design featuring a microtrench structure. Acting as a crystalline lens, the microtrench minimizes nuclear interactions, thereby significantly enhancing channeling efficiency.
This paper details the fabrication process for these advanced bent crystals, utilizing high-purity silicon wafers and state-of-the-art micromachining techniques. A silicon nitride thin film induces controlled curvature, while Deep Reactive Ion Etching (DRIE) is employed to create the microtrench with sub-micron precision. Characterization studies confirm the structural integrity and channeling potential of the microstructures.
These results represent a significant milestone in the development of bent crystals capable of achieving near-ideal channeling efficiency—a breakthrough in crystal-assisted particle beam technology. This advancement holds the potential to revolutionize collimation systems, enhance fixed-target experiments, and shape the design of next-generation accelerators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
21.40%
发文量
787
审稿时长
1 months
期刊介绍: Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section. Theoretical as well as experimental papers are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信