添加Y2O3对原位形成掺y ZrC-SiC-ZrSi2涂层的C/C- zrc - sic复合材料显微组织和烧蚀行为的影响

IF 5.5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Kaiyue Hu , Juanli Deng , Yuan Wang , Jingchao Ma , Sijie Kou , Shangwu Fan
{"title":"添加Y2O3对原位形成掺y ZrC-SiC-ZrSi2涂层的C/C- zrc - sic复合材料显微组织和烧蚀行为的影响","authors":"Kaiyue Hu ,&nbsp;Juanli Deng ,&nbsp;Yuan Wang ,&nbsp;Jingchao Ma ,&nbsp;Sijie Kou ,&nbsp;Shangwu Fan","doi":"10.1016/j.matchar.2025.115548","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, C/C-ZrC-SiC composites with in-situ formed Y-doped ZrC-SiC-ZrSi<sub>2</sub> coatings were fabricated via reactive melt infiltration (RMI), with varying Y<sub>2</sub>O<sub>3</sub> contents (5 wt%, 10 wt%, and 15 wt%). The influence of Y<sub>2</sub>O<sub>3</sub> doping on phase composition, microstructure, and ablation behavior was systematically investigated under oxyacetylene flame conditions. Among all samples, the composite with 10 wt% Y<sub>2</sub>O<sub>3</sub> exhibited the most favorable ablation performance, achieving mass and linear ablation rates of −0.88 ± 0.11 mg/s and − 1.28 ± 0.11 μm/s, respectively. The enhanced performance is primarily attributed to the formation of a thermally stable, partially stabilized ZrO<sub>2</sub> phases and a robust, hierarchical oxide architecture that effectively inhibits oxygen ingress and thermal degradation. In contrast, both insufficient and excessive Y<sub>2</sub>O<sub>3</sub> additions resulted in microstructural defects detrimental to ablation resistance. These findings demonstrate that optimized Y<sub>2</sub>O<sub>3</sub> doping effectively tailors phase stability and structural integrity of ZrC-based coatings, offering a promising route for developing advanced thermal protection materials.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"229 ","pages":"Article 115548"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Y2O3 addition on the microstructure and ablation behavior of C/C-ZrC-SiC composites with in-situ formed Y-doped ZrC-SiC-ZrSi2 coating\",\"authors\":\"Kaiyue Hu ,&nbsp;Juanli Deng ,&nbsp;Yuan Wang ,&nbsp;Jingchao Ma ,&nbsp;Sijie Kou ,&nbsp;Shangwu Fan\",\"doi\":\"10.1016/j.matchar.2025.115548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, C/C-ZrC-SiC composites with in-situ formed Y-doped ZrC-SiC-ZrSi<sub>2</sub> coatings were fabricated via reactive melt infiltration (RMI), with varying Y<sub>2</sub>O<sub>3</sub> contents (5 wt%, 10 wt%, and 15 wt%). The influence of Y<sub>2</sub>O<sub>3</sub> doping on phase composition, microstructure, and ablation behavior was systematically investigated under oxyacetylene flame conditions. Among all samples, the composite with 10 wt% Y<sub>2</sub>O<sub>3</sub> exhibited the most favorable ablation performance, achieving mass and linear ablation rates of −0.88 ± 0.11 mg/s and − 1.28 ± 0.11 μm/s, respectively. The enhanced performance is primarily attributed to the formation of a thermally stable, partially stabilized ZrO<sub>2</sub> phases and a robust, hierarchical oxide architecture that effectively inhibits oxygen ingress and thermal degradation. In contrast, both insufficient and excessive Y<sub>2</sub>O<sub>3</sub> additions resulted in microstructural defects detrimental to ablation resistance. These findings demonstrate that optimized Y<sub>2</sub>O<sub>3</sub> doping effectively tailors phase stability and structural integrity of ZrC-based coatings, offering a promising route for developing advanced thermal protection materials.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"229 \",\"pages\":\"Article 115548\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104458032500837X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104458032500837X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,C/C- zrc - sic复合材料与原位形成的y掺杂ZrC-SiC-ZrSi2涂层通过反应熔融渗透(RMI)制备,Y2O3含量不同(5 wt%, 10 wt%和15 wt%)。在氧乙炔火焰条件下,系统地研究了Y2O3掺杂对材料相组成、微观结构和烧蚀行为的影响。其中,Y2O3质量分数为10 wt%的复合材料的烧蚀性能最好,质量烧蚀率为- 0.88±0.11 mg/s,线性烧蚀率为- 1.28±0.11 μm/s。增强的性能主要归功于热稳定,部分稳定的ZrO2相的形成,以及有效抑制氧气进入和热降解的坚固的分层氧化物结构。相比之下,Y2O3添加量不足和过量都会导致不利于抗烧蚀的微结构缺陷。这些发现表明,优化后的Y2O3掺杂有效地改善了zrc基涂层的相稳定性和结构完整性,为开发先进的热防护材料提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the Y2O3 addition on the microstructure and ablation behavior of C/C-ZrC-SiC composites with in-situ formed Y-doped ZrC-SiC-ZrSi2 coating
In this work, C/C-ZrC-SiC composites with in-situ formed Y-doped ZrC-SiC-ZrSi2 coatings were fabricated via reactive melt infiltration (RMI), with varying Y2O3 contents (5 wt%, 10 wt%, and 15 wt%). The influence of Y2O3 doping on phase composition, microstructure, and ablation behavior was systematically investigated under oxyacetylene flame conditions. Among all samples, the composite with 10 wt% Y2O3 exhibited the most favorable ablation performance, achieving mass and linear ablation rates of −0.88 ± 0.11 mg/s and − 1.28 ± 0.11 μm/s, respectively. The enhanced performance is primarily attributed to the formation of a thermally stable, partially stabilized ZrO2 phases and a robust, hierarchical oxide architecture that effectively inhibits oxygen ingress and thermal degradation. In contrast, both insufficient and excessive Y2O3 additions resulted in microstructural defects detrimental to ablation resistance. These findings demonstrate that optimized Y2O3 doping effectively tailors phase stability and structural integrity of ZrC-based coatings, offering a promising route for developing advanced thermal protection materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信