CdX (X = Te, Se和S)半导体纳米粒子的电子纳米结构:形状和尺寸效应

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Le Thu Lam , Nguyen Trong Tam , Ho Khac Hieu
{"title":"CdX (X = Te, Se和S)半导体纳米粒子的电子纳米结构:形状和尺寸效应","authors":"Le Thu Lam ,&nbsp;Nguyen Trong Tam ,&nbsp;Ho Khac Hieu","doi":"10.1016/j.optmat.2025.117448","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a electronic nanoarchitectonics study of semiconductor nanoparticles using the bond energy model combined with tight-binding approximation. Analytical expressions of the band gap, conduction-band minimum, and valence-band maximum energies are formulated as functions of nanoparticle size and shape. Numerical computations are performed for CdTe, CdSe, and CdS nanoparticles with sizes up to 20 nm. Theoretical results are validated through comparisons with experimental data, demonstrating strong agreement. Our findings reveal a significant widening of the band gap as particle size decreases, particularly for sizes below 5 nm. For larger nanoparticles, the band gap gradually converges toward the bulk semiconductor limit. Our findings enhance the fundamental understanding of the nanoscale electronic properties of CdX (X = Se, Te, S) semiconductor nanoparticles and offer insights into precisely tuning the band gap energy and tailoring optical properties to architect electronic performance for specific applications.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"168 ","pages":"Article 117448"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic nanoarchitectonics of CdX (X = Te, Se, and S) semiconductor nanoparticles: Shape and size effects\",\"authors\":\"Le Thu Lam ,&nbsp;Nguyen Trong Tam ,&nbsp;Ho Khac Hieu\",\"doi\":\"10.1016/j.optmat.2025.117448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a electronic nanoarchitectonics study of semiconductor nanoparticles using the bond energy model combined with tight-binding approximation. Analytical expressions of the band gap, conduction-band minimum, and valence-band maximum energies are formulated as functions of nanoparticle size and shape. Numerical computations are performed for CdTe, CdSe, and CdS nanoparticles with sizes up to 20 nm. Theoretical results are validated through comparisons with experimental data, demonstrating strong agreement. Our findings reveal a significant widening of the band gap as particle size decreases, particularly for sizes below 5 nm. For larger nanoparticles, the band gap gradually converges toward the bulk semiconductor limit. Our findings enhance the fundamental understanding of the nanoscale electronic properties of CdX (X = Se, Te, S) semiconductor nanoparticles and offer insights into precisely tuning the band gap energy and tailoring optical properties to architect electronic performance for specific applications.</div></div>\",\"PeriodicalId\":19564,\"journal\":{\"name\":\"Optical Materials\",\"volume\":\"168 \",\"pages\":\"Article 117448\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925346725008080\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346725008080","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用键能模型结合紧密结合近似对半导体纳米粒子进行了电子纳米结构学研究。带隙、导带最小值和价带最大能的解析表达式是纳米颗粒尺寸和形状的函数。数值计算执行了CdTe, CdSe和CdS纳米颗粒的尺寸高达20纳米。通过与实验数据的比较,验证了理论结果的正确性。我们的研究结果表明,随着粒径的减小,带隙显着变宽,特别是对于小于5nm的粒径。对于较大的纳米颗粒,带隙逐渐收敛到体半导体极限。我们的研究结果增强了对CdX (X = Se, Te, S)半导体纳米粒子纳米级电子特性的基本理解,并为精确调节带隙能量和定制光学特性提供了见解,以构建特定应用的电子性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronic nanoarchitectonics of CdX (X = Te, Se, and S) semiconductor nanoparticles: Shape and size effects
This paper presents a electronic nanoarchitectonics study of semiconductor nanoparticles using the bond energy model combined with tight-binding approximation. Analytical expressions of the band gap, conduction-band minimum, and valence-band maximum energies are formulated as functions of nanoparticle size and shape. Numerical computations are performed for CdTe, CdSe, and CdS nanoparticles with sizes up to 20 nm. Theoretical results are validated through comparisons with experimental data, demonstrating strong agreement. Our findings reveal a significant widening of the band gap as particle size decreases, particularly for sizes below 5 nm. For larger nanoparticles, the band gap gradually converges toward the bulk semiconductor limit. Our findings enhance the fundamental understanding of the nanoscale electronic properties of CdX (X = Se, Te, S) semiconductor nanoparticles and offer insights into precisely tuning the band gap energy and tailoring optical properties to architect electronic performance for specific applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Materials
Optical Materials 工程技术-材料科学:综合
CiteScore
6.60
自引率
12.80%
发文量
1265
审稿时长
38 days
期刊介绍: Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials. OPTICAL MATERIALS focuses on: • Optical Properties of Material Systems; • The Materials Aspects of Optical Phenomena; • The Materials Aspects of Devices and Applications. Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信