L. Adrian Bruijnzeel , Jorge L. Peña-Arancibia , Douglas Sheil , Alan D. Ziegler , Jun Zhang , Bob W. Zwartendijk , Christian Birkel , Ge Sun , Yanhui Wang , Xiaoping Zhang
{"title":"通过在热带退化土地上恢复森林景观改善地下水补给和旱季流量的潜力","authors":"L. Adrian Bruijnzeel , Jorge L. Peña-Arancibia , Douglas Sheil , Alan D. Ziegler , Jun Zhang , Bob W. Zwartendijk , Christian Birkel , Ge Sun , Yanhui Wang , Xiaoping Zhang","doi":"10.1016/j.fecs.2025.100376","DOIUrl":null,"url":null,"abstract":"<div><div>As interest in tropical forest restoration accelerates, understanding its hydrological implications is increasingly urgent. While concerns persist that reforestation will reduce annual water yields—particularly in drier climates—we highlight conditions under which forest landscape restoration (FLR) can improve seasonal water availability, especially during the dry season. We examine the trade-off between increased vegetation water use (“pumping”) and enhanced infiltration and subsurface retention (“sponging”) following forestation of degraded lands, the recovery of vegetation's ability to capture “occult” precipitation (fog) in specific coastal and montane settings, and the role of forest cover in enhancing moisture recycling and transport at multiple scales. A pan-tropical sensitivity analysis shows that in degraded landscapes with deep soils and pronounced rainfall seasonality, infiltration gains following forestation can offset or exceed evaporative losses, thereby supporting groundwater recharge and increasing dry-season flows in approximately 10% of cases, with an additional 8% showing near-neutral (slightly negative) outcomes. These findings challenge the assumption that forestation uniformly reduces water availability and underscore the need to prioritize dry-season flow recovery—rather than annual water yield—as a central hydrological goal of FLR. We call for trans-disciplinary research and long-term monitoring to inform forest restoration strategies, particularly in seasonally dry regions where water scarcity is most acute.</div></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"14 ","pages":"Article 100376"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential for improved groundwater recharge and dry-season flows through forest landscape restoration on degraded lands in the tropics\",\"authors\":\"L. Adrian Bruijnzeel , Jorge L. Peña-Arancibia , Douglas Sheil , Alan D. Ziegler , Jun Zhang , Bob W. Zwartendijk , Christian Birkel , Ge Sun , Yanhui Wang , Xiaoping Zhang\",\"doi\":\"10.1016/j.fecs.2025.100376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As interest in tropical forest restoration accelerates, understanding its hydrological implications is increasingly urgent. While concerns persist that reforestation will reduce annual water yields—particularly in drier climates—we highlight conditions under which forest landscape restoration (FLR) can improve seasonal water availability, especially during the dry season. We examine the trade-off between increased vegetation water use (“pumping”) and enhanced infiltration and subsurface retention (“sponging”) following forestation of degraded lands, the recovery of vegetation's ability to capture “occult” precipitation (fog) in specific coastal and montane settings, and the role of forest cover in enhancing moisture recycling and transport at multiple scales. A pan-tropical sensitivity analysis shows that in degraded landscapes with deep soils and pronounced rainfall seasonality, infiltration gains following forestation can offset or exceed evaporative losses, thereby supporting groundwater recharge and increasing dry-season flows in approximately 10% of cases, with an additional 8% showing near-neutral (slightly negative) outcomes. These findings challenge the assumption that forestation uniformly reduces water availability and underscore the need to prioritize dry-season flow recovery—rather than annual water yield—as a central hydrological goal of FLR. We call for trans-disciplinary research and long-term monitoring to inform forest restoration strategies, particularly in seasonally dry regions where water scarcity is most acute.</div></div>\",\"PeriodicalId\":54270,\"journal\":{\"name\":\"Forest Ecosystems\",\"volume\":\"14 \",\"pages\":\"Article 100376\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecosystems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2197562025000855\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562025000855","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Potential for improved groundwater recharge and dry-season flows through forest landscape restoration on degraded lands in the tropics
As interest in tropical forest restoration accelerates, understanding its hydrological implications is increasingly urgent. While concerns persist that reforestation will reduce annual water yields—particularly in drier climates—we highlight conditions under which forest landscape restoration (FLR) can improve seasonal water availability, especially during the dry season. We examine the trade-off between increased vegetation water use (“pumping”) and enhanced infiltration and subsurface retention (“sponging”) following forestation of degraded lands, the recovery of vegetation's ability to capture “occult” precipitation (fog) in specific coastal and montane settings, and the role of forest cover in enhancing moisture recycling and transport at multiple scales. A pan-tropical sensitivity analysis shows that in degraded landscapes with deep soils and pronounced rainfall seasonality, infiltration gains following forestation can offset or exceed evaporative losses, thereby supporting groundwater recharge and increasing dry-season flows in approximately 10% of cases, with an additional 8% showing near-neutral (slightly negative) outcomes. These findings challenge the assumption that forestation uniformly reduces water availability and underscore the need to prioritize dry-season flow recovery—rather than annual water yield—as a central hydrological goal of FLR. We call for trans-disciplinary research and long-term monitoring to inform forest restoration strategies, particularly in seasonally dry regions where water scarcity is most acute.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.