{"title":"von Neumann代数的Radon-Nikodym型性质","authors":"Yuzhang Chen , Chi-Keung Ng","doi":"10.1016/j.jmaa.2025.130032","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> be a von Neumann algebra and <em>ϕ</em> be a normal semi-finite weight. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> be the centralizer and the support of <em>ϕ</em>, respectively. Write <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>)</mo></math></span> for the center of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>.</div><div>If <em>ϕ</em> satisfies the condition:</div><div>(1) <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>∩</mo><mi>M</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>,</div><div>then the following “Radon-Nikodym type property” holds:</div><div>(2) for each normal semi-finite weight <em>ψ</em>, if <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ψ</mi></mrow></msub></math></span>, then there is a self-adjoint positive operator <em>h</em> affiliated with <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>)</mo></math></span> such that <span><math><mi>ψ</mi><mo>=</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>.</div><div>It is shown that if <em>ϕ</em> is strictly semi-finite, then <span><math><mo>(</mo><mn>2</mn><mo>)</mo><mo>⇒</mo><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, and they are equivalent to:</div><div>(2) for every <sup>⁎</sup>-automorphism <em>θ</em> on <em>M</em> with <span><math><mi>θ</mi><msub><mrow><mo>|</mo></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></msub><mo>=</mo><msub><mrow><mi>id</mi></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></msub></math></span>, one has <span><math><mi>ϕ</mi><mo>∘</mo><mi>θ</mi><mo>=</mo><mi>ϕ</mi></math></span>;</div><div>(4) there exists a unique normal conditional expectation from <em>M</em> onto <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>.</div><div>When <em>M</em> has separable predual and <em>ϕ</em> is both strictly semi-finite and faithful, Condition (1) is also equivalent to</div><div>(5) <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> contains a maximal abelian <sup>⁎</sup>-subalgebra of <em>M</em>.</div><div>Furthermore, if <em>M</em> has separable predual but has no type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> part, then Condition (1) is satisfied for every strictly semi-finite weight <em>ϕ</em>. Moreover, a factor <em>M</em> with separable predual is not of type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> if and only if the “Radon-Nikodym type property” as in Condition (2) holds for every strictly semi-finite weight <span><math><mi>ϕ</mi><mo>∈</mo><mi>W</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130032"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Radon-Nikodym type property for von Neumann algebras\",\"authors\":\"Yuzhang Chen , Chi-Keung Ng\",\"doi\":\"10.1016/j.jmaa.2025.130032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>M</em> be a von Neumann algebra and <em>ϕ</em> be a normal semi-finite weight. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> be the centralizer and the support of <em>ϕ</em>, respectively. Write <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>)</mo></math></span> for the center of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>.</div><div>If <em>ϕ</em> satisfies the condition:</div><div>(1) <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>∩</mo><mi>M</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>,</div><div>then the following “Radon-Nikodym type property” holds:</div><div>(2) for each normal semi-finite weight <em>ψ</em>, if <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ψ</mi></mrow></msub></math></span>, then there is a self-adjoint positive operator <em>h</em> affiliated with <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>)</mo></math></span> such that <span><math><mi>ψ</mi><mo>=</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>.</div><div>It is shown that if <em>ϕ</em> is strictly semi-finite, then <span><math><mo>(</mo><mn>2</mn><mo>)</mo><mo>⇒</mo><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, and they are equivalent to:</div><div>(2) for every <sup>⁎</sup>-automorphism <em>θ</em> on <em>M</em> with <span><math><mi>θ</mi><msub><mrow><mo>|</mo></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></msub><mo>=</mo><msub><mrow><mi>id</mi></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></msub></math></span>, one has <span><math><mi>ϕ</mi><mo>∘</mo><mi>θ</mi><mo>=</mo><mi>ϕ</mi></math></span>;</div><div>(4) there exists a unique normal conditional expectation from <em>M</em> onto <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>.</div><div>When <em>M</em> has separable predual and <em>ϕ</em> is both strictly semi-finite and faithful, Condition (1) is also equivalent to</div><div>(5) <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> contains a maximal abelian <sup>⁎</sup>-subalgebra of <em>M</em>.</div><div>Furthermore, if <em>M</em> has separable predual but has no type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> part, then Condition (1) is satisfied for every strictly semi-finite weight <em>ϕ</em>. Moreover, a factor <em>M</em> with separable predual is not of type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> if and only if the “Radon-Nikodym type property” as in Condition (2) holds for every strictly semi-finite weight <span><math><mi>ϕ</mi><mo>∈</mo><mi>W</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"554 2\",\"pages\":\"Article 130032\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008133\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Radon-Nikodym type property for von Neumann algebras
Let M be a von Neumann algebra and ϕ be a normal semi-finite weight. Let and be the centralizer and the support of ϕ, respectively. Write for the center of .
If ϕ satisfies the condition:
(1) ,
then the following “Radon-Nikodym type property” holds:
(2) for each normal semi-finite weight ψ, if , and , then there is a self-adjoint positive operator h affiliated with such that .
It is shown that if ϕ is strictly semi-finite, then , and they are equivalent to:
(2) for every ⁎-automorphism θ on M with , one has ;
(4) there exists a unique normal conditional expectation from M onto .
When M has separable predual and ϕ is both strictly semi-finite and faithful, Condition (1) is also equivalent to
(5) contains a maximal abelian ⁎-subalgebra of M.
Furthermore, if M has separable predual but has no type part, then Condition (1) is satisfied for every strictly semi-finite weight ϕ. Moreover, a factor M with separable predual is not of type if and only if the “Radon-Nikodym type property” as in Condition (2) holds for every strictly semi-finite weight .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.