von Neumann代数的Radon-Nikodym型性质

IF 1.2 3区 数学 Q1 MATHEMATICS
Yuzhang Chen , Chi-Keung Ng
{"title":"von Neumann代数的Radon-Nikodym型性质","authors":"Yuzhang Chen ,&nbsp;Chi-Keung Ng","doi":"10.1016/j.jmaa.2025.130032","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> be a von Neumann algebra and <em>ϕ</em> be a normal semi-finite weight. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> be the centralizer and the support of <em>ϕ</em>, respectively. Write <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>)</mo></math></span> for the center of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>.</div><div>If <em>ϕ</em> satisfies the condition:</div><div>(1) <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>∩</mo><mi>M</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>,</div><div>then the following “Radon-Nikodym type property” holds:</div><div>(2) for each normal semi-finite weight <em>ψ</em>, if <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ψ</mi></mrow></msub></math></span>, then there is a self-adjoint positive operator <em>h</em> affiliated with <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>)</mo></math></span> such that <span><math><mi>ψ</mi><mo>=</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>.</div><div>It is shown that if <em>ϕ</em> is strictly semi-finite, then <span><math><mo>(</mo><mn>2</mn><mo>)</mo><mo>⇒</mo><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, and they are equivalent to:</div><div>(2) for every <sup>⁎</sup>-automorphism <em>θ</em> on <em>M</em> with <span><math><mi>θ</mi><msub><mrow><mo>|</mo></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></msub><mo>=</mo><msub><mrow><mi>id</mi></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></msub></math></span>, one has <span><math><mi>ϕ</mi><mo>∘</mo><mi>θ</mi><mo>=</mo><mi>ϕ</mi></math></span>;</div><div>(4) there exists a unique normal conditional expectation from <em>M</em> onto <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>.</div><div>When <em>M</em> has separable predual and <em>ϕ</em> is both strictly semi-finite and faithful, Condition (1) is also equivalent to</div><div>(5) <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> contains a maximal abelian <sup>⁎</sup>-subalgebra of <em>M</em>.</div><div>Furthermore, if <em>M</em> has separable predual but has no type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> part, then Condition (1) is satisfied for every strictly semi-finite weight <em>ϕ</em>. Moreover, a factor <em>M</em> with separable predual is not of type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> if and only if the “Radon-Nikodym type property” as in Condition (2) holds for every strictly semi-finite weight <span><math><mi>ϕ</mi><mo>∈</mo><mi>W</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130032"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Radon-Nikodym type property for von Neumann algebras\",\"authors\":\"Yuzhang Chen ,&nbsp;Chi-Keung Ng\",\"doi\":\"10.1016/j.jmaa.2025.130032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>M</em> be a von Neumann algebra and <em>ϕ</em> be a normal semi-finite weight. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> be the centralizer and the support of <em>ϕ</em>, respectively. Write <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>)</mo></math></span> for the center of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>.</div><div>If <em>ϕ</em> satisfies the condition:</div><div>(1) <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>∩</mo><mi>M</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>,</div><div>then the following “Radon-Nikodym type property” holds:</div><div>(2) for each normal semi-finite weight <em>ψ</em>, if <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ψ</mi></mrow></msub></math></span>, then there is a self-adjoint positive operator <em>h</em> affiliated with <span><math><mi>Z</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>)</mo></math></span> such that <span><math><mi>ψ</mi><mo>=</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>.</div><div>It is shown that if <em>ϕ</em> is strictly semi-finite, then <span><math><mo>(</mo><mn>2</mn><mo>)</mo><mo>⇒</mo><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, and they are equivalent to:</div><div>(2) for every <sup>⁎</sup>-automorphism <em>θ</em> on <em>M</em> with <span><math><mi>θ</mi><msub><mrow><mo>|</mo></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></msub><mo>=</mo><msub><mrow><mi>id</mi></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></msub></math></span>, one has <span><math><mi>ϕ</mi><mo>∘</mo><mi>θ</mi><mo>=</mo><mi>ϕ</mi></math></span>;</div><div>(4) there exists a unique normal conditional expectation from <em>M</em> onto <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>.</div><div>When <em>M</em> has separable predual and <em>ϕ</em> is both strictly semi-finite and faithful, Condition (1) is also equivalent to</div><div>(5) <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span> contains a maximal abelian <sup>⁎</sup>-subalgebra of <em>M</em>.</div><div>Furthermore, if <em>M</em> has separable predual but has no type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> part, then Condition (1) is satisfied for every strictly semi-finite weight <em>ϕ</em>. Moreover, a factor <em>M</em> with separable predual is not of type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> if and only if the “Radon-Nikodym type property” as in Condition (2) holds for every strictly semi-finite weight <span><math><mi>ϕ</mi><mo>∈</mo><mi>W</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"554 2\",\"pages\":\"Article 130032\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008133\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M是一个von Neumann代数,φ是一个正规的半有限权。设m φ和sφ分别为φ的扶正器和支撑器。写Z(Mϕ)作为Mϕ的中心。如果φ满足下列条件:(1)φ∩M前程φ,则下列“Radon-Nikodym型性质”成立:(2)对于每一个正规半有限权ψ,如果φ≤φ, φ∈φ, φ φ的前程φ,则Z(φ)有一个自伴正算子h,使得ψ= φ。证明了如果φ是严格半有限的,则(2)⇒(1),并且它们等价于:(2)对于M上的每个φ -自同构θ, θ|M φ = idm φ,有φ°θ= φ;(4)从M到M φ存在唯一的正态条件期望。当M具有可分离的前元,且φ是严格半有限忠实时,条件(1)也等价于条件(5)。其中M的φ包含M的极大阿贝珥α -子代数。更进一步,如果M具有可分离的前元,但没有III1型部分,则条件(1)满足每一个严格半有限权的φ。此外,当且仅当条件(2)中的“Radon-Nikodym型性质”对每个严格半有限权φ∈W(M)成立时,具有可分离前元的因子M不属于III1型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Radon-Nikodym type property for von Neumann algebras
Let M be a von Neumann algebra and ϕ be a normal semi-finite weight. Let Mϕ and sϕ be the centralizer and the support of ϕ, respectively. Write Z(Mϕ) for the center of Mϕ.
If ϕ satisfies the condition:
(1) MϕMMϕ,
then the following “Radon-Nikodym type property” holds:
(2) for each normal semi-finite weight ψ, if sψsϕ, sψMϕ and MϕMψ, then there is a self-adjoint positive operator h affiliated with Z(Mϕ) such that ψ=ϕh.
It is shown that if ϕ is strictly semi-finite, then (2)(1), and they are equivalent to:
(2) for every -automorphism θ on M with θ|Mϕ=idMϕ, one has ϕθ=ϕ;
(4) there exists a unique normal conditional expectation from M onto Mϕ.
When M has separable predual and ϕ is both strictly semi-finite and faithful, Condition (1) is also equivalent to
(5) Mϕ contains a maximal abelian -subalgebra of M.
Furthermore, if M has separable predual but has no type III1 part, then Condition (1) is satisfied for every strictly semi-finite weight ϕ. Moreover, a factor M with separable predual is not of type III1 if and only if the “Radon-Nikodym type property” as in Condition (2) holds for every strictly semi-finite weight ϕW(M).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信