Lauren Way, Catalin D. Spataru, Reese E. Jones, Dallas R. Trinkle, Andrew J. E. Rowberg, Joel B. Varley, Robert B. Wexler, Christopher M. Smyth, Tyra C. Douglas, Sean R. Bishop, Elliot J. Fuller, Anthony H. McDaniel, Stephan Lany and Matthew D. Witman*,
{"title":"缺陷扩散图神经网络在高温材料发现中的应用","authors":"Lauren Way, Catalin D. Spataru, Reese E. Jones, Dallas R. Trinkle, Andrew J. E. Rowberg, Joel B. Varley, Robert B. Wexler, Christopher M. Smyth, Tyra C. Douglas, Sean R. Bishop, Elliot J. Fuller, Anthony H. McDaniel, Stephan Lany and Matthew D. Witman*, ","doi":"10.1021/acs.chemmater.5c00021","DOIUrl":null,"url":null,"abstract":"<p >The migration of crystallographic defects dictates material properties and performance for a plethora of technological applications. Density functional theory (DFT)-based nudged elastic band (NEB) calculations are a powerful computational technique for predicting defect migration activation energy barriers, yet they become prohibitively expensive for high-throughput screening of defect diffusivities. Without introducing hand-crafted (i.e., chemistry- or structure-specific) descriptors, we propose a generalized deep learning approach to train surrogate models for NEB energies of vacancy migration by hybridizing graph neural networks with transformer encoders and simply using pristine host structures as input. With sufficient training data, computationally efficient and simultaneous inference of vacancy defect thermodynamics and migration activation energies can be obtained to compute temperature-dependent vacancy diffusivities and to down-select candidates for more thorough DFT analysis or experiments. Thus, as we specifically demonstrate for potential water-splitting materials, candidates with desired defect thermodynamics, kinetics, and host stability properties can be more rapidly targeted from open-source databases of experimentally validated or hypothetical materials.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 17","pages":"6473–6484"},"PeriodicalIF":7.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Diffusion Graph Neural Networks for Materials Discovery in High-Temperature Energy Applications\",\"authors\":\"Lauren Way, Catalin D. Spataru, Reese E. Jones, Dallas R. Trinkle, Andrew J. E. Rowberg, Joel B. Varley, Robert B. Wexler, Christopher M. Smyth, Tyra C. Douglas, Sean R. Bishop, Elliot J. Fuller, Anthony H. McDaniel, Stephan Lany and Matthew D. Witman*, \",\"doi\":\"10.1021/acs.chemmater.5c00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The migration of crystallographic defects dictates material properties and performance for a plethora of technological applications. Density functional theory (DFT)-based nudged elastic band (NEB) calculations are a powerful computational technique for predicting defect migration activation energy barriers, yet they become prohibitively expensive for high-throughput screening of defect diffusivities. Without introducing hand-crafted (i.e., chemistry- or structure-specific) descriptors, we propose a generalized deep learning approach to train surrogate models for NEB energies of vacancy migration by hybridizing graph neural networks with transformer encoders and simply using pristine host structures as input. With sufficient training data, computationally efficient and simultaneous inference of vacancy defect thermodynamics and migration activation energies can be obtained to compute temperature-dependent vacancy diffusivities and to down-select candidates for more thorough DFT analysis or experiments. Thus, as we specifically demonstrate for potential water-splitting materials, candidates with desired defect thermodynamics, kinetics, and host stability properties can be more rapidly targeted from open-source databases of experimentally validated or hypothetical materials.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"37 17\",\"pages\":\"6473–6484\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00021\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00021","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Defect Diffusion Graph Neural Networks for Materials Discovery in High-Temperature Energy Applications
The migration of crystallographic defects dictates material properties and performance for a plethora of technological applications. Density functional theory (DFT)-based nudged elastic band (NEB) calculations are a powerful computational technique for predicting defect migration activation energy barriers, yet they become prohibitively expensive for high-throughput screening of defect diffusivities. Without introducing hand-crafted (i.e., chemistry- or structure-specific) descriptors, we propose a generalized deep learning approach to train surrogate models for NEB energies of vacancy migration by hybridizing graph neural networks with transformer encoders and simply using pristine host structures as input. With sufficient training data, computationally efficient and simultaneous inference of vacancy defect thermodynamics and migration activation energies can be obtained to compute temperature-dependent vacancy diffusivities and to down-select candidates for more thorough DFT analysis or experiments. Thus, as we specifically demonstrate for potential water-splitting materials, candidates with desired defect thermodynamics, kinetics, and host stability properties can be more rapidly targeted from open-source databases of experimentally validated or hypothetical materials.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.