SPDEs解的空间平均值与解渐近无关

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Ciprian A. Tudor , Jérémy Zurcher
{"title":"SPDEs解的空间平均值与解渐近无关","authors":"Ciprian A. Tudor ,&nbsp;Jérémy Zurcher","doi":"10.1016/j.bulsci.2025.103719","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> be the solution to the stochastic heat or wave equation driven by a Gaussian noise which is white in time and white or correlated with respect to the spatial variable. We consider the spatial average of the solution <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>R</mi></mrow></msub></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>≤</mo><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>d</mi><mi>x</mi></math></span>, where <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mi>E</mi><msup><mrow><mo>(</mo><msub><mrow><mo>∫</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>≤</mo><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. It is known that, when <em>R</em> goes to infinity, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> converges in law to a standard Gaussian random variable <em>Z</em>. We show that the spatial average <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is actually asymptotic independent by the solution itself, at any time and at any point in space, meaning that the random vector <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span> converges in distribution, as <span><math><mi>R</mi><mo>→</mo><mo>∞</mo></math></span>, to <span><math><mo>(</mo><mi>Z</mi><mo>,</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>, where <em>Z</em> is a standard normal random variable independent of <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. By using the Stein-Malliavin calculus, we also obtain the rate of convergence, under the Wasserstein distance, for this limit theorem.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103719"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spatial average of solutions to SPDEs is asymptotically independent of the solution\",\"authors\":\"Ciprian A. Tudor ,&nbsp;Jérémy Zurcher\",\"doi\":\"10.1016/j.bulsci.2025.103719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> be the solution to the stochastic heat or wave equation driven by a Gaussian noise which is white in time and white or correlated with respect to the spatial variable. We consider the spatial average of the solution <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>R</mi></mrow></msub></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>≤</mo><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>d</mi><mi>x</mi></math></span>, where <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mi>E</mi><msup><mrow><mo>(</mo><msub><mrow><mo>∫</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>≤</mo><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. It is known that, when <em>R</em> goes to infinity, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> converges in law to a standard Gaussian random variable <em>Z</em>. We show that the spatial average <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is actually asymptotic independent by the solution itself, at any time and at any point in space, meaning that the random vector <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span> converges in distribution, as <span><math><mi>R</mi><mo>→</mo><mo>∞</mo></math></span>, to <span><math><mo>(</mo><mi>Z</mi><mo>,</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>, where <em>Z</em> is a standard normal random variable independent of <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. By using the Stein-Malliavin calculus, we also obtain the rate of convergence, under the Wasserstein distance, for this limit theorem.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103719\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001459\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001459","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设(u(t,x),t≥0,x∈Rd)为高斯噪声驱动的随机热波方程的解,该高斯噪声在时间上为白色,或与空间变量相关。考虑解FR(t)=1σR∫|x|≤R(u(t,x)−1)dx的空间平均值,其中σR2=E(∫|x|≤R(u(t,x)−1)dx)2。我们知道,当R趋于无穷时,FR(t)在律上收敛于一个标准高斯随机变量Z。我们证明了空间平均FR(t)实际上是解本身渐近独立的,在空间的任何时间和任何点,这意味着随机向量(FR(t),u(t,x0))在分布上收敛,当R→∞时,收敛到(Z,u(t,x0)),其中Z是一个独立于u(t,x0)的标准正态随机变量。通过使用Stein-Malliavin演算,我们也得到了在Wasserstein距离下,这个极限定理的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spatial average of solutions to SPDEs is asymptotically independent of the solution
Let (u(t,x),t0,xRd) be the solution to the stochastic heat or wave equation driven by a Gaussian noise which is white in time and white or correlated with respect to the spatial variable. We consider the spatial average of the solution FR(t)=1σR|x|R(u(t,x)1)dx, where σR2=E(|x|R(u(t,x)1)dx)2. It is known that, when R goes to infinity, FR(t) converges in law to a standard Gaussian random variable Z. We show that the spatial average FR(t) is actually asymptotic independent by the solution itself, at any time and at any point in space, meaning that the random vector (FR(t),u(t,x0)) converges in distribution, as R, to (Z,u(t,x0)), where Z is a standard normal random variable independent of u(t,x0). By using the Stein-Malliavin calculus, we also obtain the rate of convergence, under the Wasserstein distance, for this limit theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信