核壳型Pd/SSZ-13@Al2O3沸石的工程:解锁优异的氮氧化物吸附和化学耐久性

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xiaoxin Chen, , , Mai-Yan Nan, , , Jun Huang, , , Lin Li, , , Zunhao Zhang, , and , Guoju Yang*, 
{"title":"核壳型Pd/SSZ-13@Al2O3沸石的工程:解锁优异的氮氧化物吸附和化学耐久性","authors":"Xiaoxin Chen,&nbsp;, ,&nbsp;Mai-Yan Nan,&nbsp;, ,&nbsp;Jun Huang,&nbsp;, ,&nbsp;Lin Li,&nbsp;, ,&nbsp;Zunhao Zhang,&nbsp;, and ,&nbsp;Guoju Yang*,&nbsp;","doi":"10.1021/acs.est.5c06402","DOIUrl":null,"url":null,"abstract":"<p >Pd-zeolites are promising passive NO<sub><i>x</i></sub> adsorber (PNA) materials for mitigating cold-start emissions from lean-burn engines. However, their practical deployment is constrained by insufficient densities and dispersion of isolated Pd<sup>2+</sup> active sites as well as their susceptibility to hydrothermal degradation and phosphorus poisoning encountered in vehicle exhaust environments. Herein, we develop a rationally engineered core–shell Pd/SSZ-13@Al<sub>2</sub>O<sub>3</sub> composite, featuring a Pd/SSZ-13 core encapsulated within a mesoporous Al<sub>2</sub>O<sub>3</sub> shell. This hierarchical architecture facilitates the controlled migration and dispersion of Pd<sup>2+</sup> species, significantly enriching and stabilizing isolated Pd active sites within the zeolite core. Comprehensive characterization and density functional theory calculations confirm that the Al<sub>2</sub>O<sub>3</sub> shell serves as a robust barrier, forming stable aluminum phosphate species that prevent phosphorus infiltration and safeguard both the zeolite framework integrity and Pd<sup>2+</sup> active sites from environmental degradation. Catalytic evaluations revealed that Pd/SSZ-13@Al<sub>2</sub>O<sub>3</sub> exhibited superior NO<sub><i>x</i></sub> adsorption capacity, favorable NO<sub><i>x</i></sub> desorption behavior, and exceptional stability under hydrothermal and phosphorus poisoning conditions, outperforming conventional Pd-zeolite catalysts. This work establishes a generalizable core–shell design strategy for stabilizing atomically dispersed active sites in harsh environments, offering broad implications for the development of durable catalytic materials in air pollution control and environmental remediation.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 38","pages":"20546–20556"},"PeriodicalIF":11.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering of Core–Shell Pd/SSZ-13@Al2O3 Zeolite: Unlocking Superior NOx Adsorption and Chemical Durability\",\"authors\":\"Xiaoxin Chen,&nbsp;, ,&nbsp;Mai-Yan Nan,&nbsp;, ,&nbsp;Jun Huang,&nbsp;, ,&nbsp;Lin Li,&nbsp;, ,&nbsp;Zunhao Zhang,&nbsp;, and ,&nbsp;Guoju Yang*,&nbsp;\",\"doi\":\"10.1021/acs.est.5c06402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Pd-zeolites are promising passive NO<sub><i>x</i></sub> adsorber (PNA) materials for mitigating cold-start emissions from lean-burn engines. However, their practical deployment is constrained by insufficient densities and dispersion of isolated Pd<sup>2+</sup> active sites as well as their susceptibility to hydrothermal degradation and phosphorus poisoning encountered in vehicle exhaust environments. Herein, we develop a rationally engineered core–shell Pd/SSZ-13@Al<sub>2</sub>O<sub>3</sub> composite, featuring a Pd/SSZ-13 core encapsulated within a mesoporous Al<sub>2</sub>O<sub>3</sub> shell. This hierarchical architecture facilitates the controlled migration and dispersion of Pd<sup>2+</sup> species, significantly enriching and stabilizing isolated Pd active sites within the zeolite core. Comprehensive characterization and density functional theory calculations confirm that the Al<sub>2</sub>O<sub>3</sub> shell serves as a robust barrier, forming stable aluminum phosphate species that prevent phosphorus infiltration and safeguard both the zeolite framework integrity and Pd<sup>2+</sup> active sites from environmental degradation. Catalytic evaluations revealed that Pd/SSZ-13@Al<sub>2</sub>O<sub>3</sub> exhibited superior NO<sub><i>x</i></sub> adsorption capacity, favorable NO<sub><i>x</i></sub> desorption behavior, and exceptional stability under hydrothermal and phosphorus poisoning conditions, outperforming conventional Pd-zeolite catalysts. This work establishes a generalizable core–shell design strategy for stabilizing atomically dispersed active sites in harsh environments, offering broad implications for the development of durable catalytic materials in air pollution control and environmental remediation.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 38\",\"pages\":\"20546–20556\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.5c06402\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c06402","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

pd -沸石是一种很有前途的被动氮氧化物吸附剂(PNA)材料,用于减少稀燃发动机的冷启动排放。然而,由于分离的Pd2+活性位点的密度和分散性不足,以及它们在汽车尾气环境中容易受到水热降解和磷中毒的影响,它们的实际部署受到了限制。在此,我们开发了一种合理设计的核壳Pd/SSZ-13@Al2O3复合材料,其特点是将Pd/SSZ-13核封装在介孔Al2O3壳中。这种分层结构有助于控制Pd2+物种的迁移和分散,显著富集和稳定沸石核心内孤立的Pd活性位点。综合表征和密度泛函理论计算证实,Al2O3外壳作为一个强大的屏障,形成稳定的磷酸铝物质,防止磷渗透,保护沸石框架的完整性和Pd2+活性位点免受环境降解。催化评价表明,Pd/SSZ-13@Al2O3在水热和磷中毒条件下表现出优异的NOx吸附能力、良好的NOx解吸行为以及优异的稳定性,优于传统的Pd-沸石催化剂。这项工作为稳定恶劣环境中原子分散活性位点建立了一种可推广的核壳设计策略,为开发用于空气污染控制和环境修复的耐用催化材料提供了广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering of Core–Shell Pd/SSZ-13@Al2O3 Zeolite: Unlocking Superior NOx Adsorption and Chemical Durability

Engineering of Core–Shell Pd/SSZ-13@Al2O3 Zeolite: Unlocking Superior NOx Adsorption and Chemical Durability

Engineering of Core–Shell Pd/SSZ-13@Al2O3 Zeolite: Unlocking Superior NOx Adsorption and Chemical Durability

Pd-zeolites are promising passive NOx adsorber (PNA) materials for mitigating cold-start emissions from lean-burn engines. However, their practical deployment is constrained by insufficient densities and dispersion of isolated Pd2+ active sites as well as their susceptibility to hydrothermal degradation and phosphorus poisoning encountered in vehicle exhaust environments. Herein, we develop a rationally engineered core–shell Pd/SSZ-13@Al2O3 composite, featuring a Pd/SSZ-13 core encapsulated within a mesoporous Al2O3 shell. This hierarchical architecture facilitates the controlled migration and dispersion of Pd2+ species, significantly enriching and stabilizing isolated Pd active sites within the zeolite core. Comprehensive characterization and density functional theory calculations confirm that the Al2O3 shell serves as a robust barrier, forming stable aluminum phosphate species that prevent phosphorus infiltration and safeguard both the zeolite framework integrity and Pd2+ active sites from environmental degradation. Catalytic evaluations revealed that Pd/SSZ-13@Al2O3 exhibited superior NOx adsorption capacity, favorable NOx desorption behavior, and exceptional stability under hydrothermal and phosphorus poisoning conditions, outperforming conventional Pd-zeolite catalysts. This work establishes a generalizable core–shell design strategy for stabilizing atomically dispersed active sites in harsh environments, offering broad implications for the development of durable catalytic materials in air pollution control and environmental remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信