{"title":"电化学手性异硫脲催化对映选择性自由基α-烯醇化酯","authors":"Ning Li, Xuzhen Ye, Yong Liu, Jin Song","doi":"10.1038/s41929-025-01408-4","DOIUrl":null,"url":null,"abstract":"Carboxylic ester motifs are prevalent in biological, chemical and materials sciences, and the asymmetric α-functionalization of simple esters plays a crucial role in the field of organic synthesis. Here we present a versatile electricity-driven asymmetric Lewis base catalysis strategy for the oxidative radical cross-coupling of simple esters with silyl enol ethers. This approach integrates the electrochemical anodic oxidation process with chiral isothiourea catalysis, enabling a polarity inversion at the nucleophilic carbon of the enolate to trigger the formation of a chiral isothiourea-bound α-carbonyl radical species from a C1-ammonium enolate. The combination of asymmetric Lewis base catalysis and electrochemistry unlocks mild oxidative radical coupling reactions, achieving up to 98% enantiomeric excess and demonstrating broad substrate compatibility. This work underscores the synthetic potential of the approach and provides a platform for advancing asymmetric electrosynthesis. Strategies for asymmetric control in electrosynthesis involving radicals are sought after. Now asymmetric Lewis base catalysis is combined with electrochemistry, enabling the oxidative radical cross-coupling of esters with silyl enol ethers and affording γ-keto esters in high enantiomeric excess.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 9","pages":"957-967"},"PeriodicalIF":44.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enantioselective radical α-enolation of esters via electrochemical chiral isothiourea catalysis\",\"authors\":\"Ning Li, Xuzhen Ye, Yong Liu, Jin Song\",\"doi\":\"10.1038/s41929-025-01408-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carboxylic ester motifs are prevalent in biological, chemical and materials sciences, and the asymmetric α-functionalization of simple esters plays a crucial role in the field of organic synthesis. Here we present a versatile electricity-driven asymmetric Lewis base catalysis strategy for the oxidative radical cross-coupling of simple esters with silyl enol ethers. This approach integrates the electrochemical anodic oxidation process with chiral isothiourea catalysis, enabling a polarity inversion at the nucleophilic carbon of the enolate to trigger the formation of a chiral isothiourea-bound α-carbonyl radical species from a C1-ammonium enolate. The combination of asymmetric Lewis base catalysis and electrochemistry unlocks mild oxidative radical coupling reactions, achieving up to 98% enantiomeric excess and demonstrating broad substrate compatibility. This work underscores the synthetic potential of the approach and provides a platform for advancing asymmetric electrosynthesis. Strategies for asymmetric control in electrosynthesis involving radicals are sought after. Now asymmetric Lewis base catalysis is combined with electrochemistry, enabling the oxidative radical cross-coupling of esters with silyl enol ethers and affording γ-keto esters in high enantiomeric excess.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"8 9\",\"pages\":\"957-967\"},\"PeriodicalIF\":44.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-025-01408-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-025-01408-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enantioselective radical α-enolation of esters via electrochemical chiral isothiourea catalysis
Carboxylic ester motifs are prevalent in biological, chemical and materials sciences, and the asymmetric α-functionalization of simple esters plays a crucial role in the field of organic synthesis. Here we present a versatile electricity-driven asymmetric Lewis base catalysis strategy for the oxidative radical cross-coupling of simple esters with silyl enol ethers. This approach integrates the electrochemical anodic oxidation process with chiral isothiourea catalysis, enabling a polarity inversion at the nucleophilic carbon of the enolate to trigger the formation of a chiral isothiourea-bound α-carbonyl radical species from a C1-ammonium enolate. The combination of asymmetric Lewis base catalysis and electrochemistry unlocks mild oxidative radical coupling reactions, achieving up to 98% enantiomeric excess and demonstrating broad substrate compatibility. This work underscores the synthetic potential of the approach and provides a platform for advancing asymmetric electrosynthesis. Strategies for asymmetric control in electrosynthesis involving radicals are sought after. Now asymmetric Lewis base catalysis is combined with electrochemistry, enabling the oxidative radical cross-coupling of esters with silyl enol ethers and affording γ-keto esters in high enantiomeric excess.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.