锌-希夫碱聚合物电催化生成H2O2:从原位光谱的机理见解。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Zhipeng Sun, Chen Zhang, Yue Wang, Tao Wang, Wei Li, Xiangfen Jiang*, Lijun Yang and Xuebin Wang*, 
{"title":"锌-希夫碱聚合物电催化生成H2O2:从原位光谱的机理见解。","authors":"Zhipeng Sun,&nbsp;Chen Zhang,&nbsp;Yue Wang,&nbsp;Tao Wang,&nbsp;Wei Li,&nbsp;Xiangfen Jiang*,&nbsp;Lijun Yang and Xuebin Wang*,&nbsp;","doi":"10.1021/acs.jpclett.5c02479","DOIUrl":null,"url":null,"abstract":"<p >The production of H<sub>2</sub>O<sub>2</sub> via the two-electron pathway of ORR has been widely studied. We pioneered the use of a Zn-Schiff base conductive polymer nanorod as an electrocatalyst for H<sub>2</sub>O<sub>2</sub> production, leveraging the Schiff base’s ability to enhance electron transfer and catalytic efficiency. This novel catalyst achieved an unprecedented &gt;98% H<sub>2</sub>O<sub>2</sub> selectivity with &gt;90% stability after 1000 h. <i>In situ</i> DRIFTS, <i>in situ</i> SERS, and theoretical calculations confirm the Schiff base’s critical role in optimizing electron transfer for superior H<sub>2</sub>O<sub>2</sub> generation.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 37","pages":"9627–9635"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zn-Schiff Base Polymer Electrocatalytic H2O2 Generation: Mechanistic Insights from In Situ Spectroscopy\",\"authors\":\"Zhipeng Sun,&nbsp;Chen Zhang,&nbsp;Yue Wang,&nbsp;Tao Wang,&nbsp;Wei Li,&nbsp;Xiangfen Jiang*,&nbsp;Lijun Yang and Xuebin Wang*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The production of H<sub>2</sub>O<sub>2</sub> via the two-electron pathway of ORR has been widely studied. We pioneered the use of a Zn-Schiff base conductive polymer nanorod as an electrocatalyst for H<sub>2</sub>O<sub>2</sub> production, leveraging the Schiff base’s ability to enhance electron transfer and catalytic efficiency. This novel catalyst achieved an unprecedented &gt;98% H<sub>2</sub>O<sub>2</sub> selectivity with &gt;90% stability after 1000 h. <i>In situ</i> DRIFTS, <i>in situ</i> SERS, and theoretical calculations confirm the Schiff base’s critical role in optimizing electron transfer for superior H<sub>2</sub>O<sub>2</sub> generation.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 37\",\"pages\":\"9627–9635\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02479\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02479","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过ORR的双电子途径生产H2O2已被广泛研究。我们率先使用锌-希夫碱导电聚合物纳米棒作为生产H2O2的电催化剂,利用希夫碱增强电子转移和催化效率的能力。这种新型催化剂在1000小时后实现了前所未有的>98%的H2O2选择性和>90%的稳定性。原位漂移、原位SERS和理论计算证实了希夫碱在优化电子转移以获得卓越的H2O2生成方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Zn-Schiff Base Polymer Electrocatalytic H2O2 Generation: Mechanistic Insights from In Situ Spectroscopy

Zn-Schiff Base Polymer Electrocatalytic H2O2 Generation: Mechanistic Insights from In Situ Spectroscopy

The production of H2O2 via the two-electron pathway of ORR has been widely studied. We pioneered the use of a Zn-Schiff base conductive polymer nanorod as an electrocatalyst for H2O2 production, leveraging the Schiff base’s ability to enhance electron transfer and catalytic efficiency. This novel catalyst achieved an unprecedented >98% H2O2 selectivity with >90% stability after 1000 h. In situ DRIFTS, in situ SERS, and theoretical calculations confirm the Schiff base’s critical role in optimizing electron transfer for superior H2O2 generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信