电解质驱动的Cu4+在MoSe2中的取代:富无机固体电解质界面的协同作用和钠离子电池的热活化。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-08 DOI:10.1021/acsnano.5c07701
Jing Qin, Xiujuan Wang*, Heyang Li, Fangxiang Wang, Ling Chen, Hongya Miao, Fangfang Xing, Shupei Yuan, Ziqi Ye, Xifei Li* and Xiaoming He*, 
{"title":"电解质驱动的Cu4+在MoSe2中的取代:富无机固体电解质界面的协同作用和钠离子电池的热活化。","authors":"Jing Qin,&nbsp;Xiujuan Wang*,&nbsp;Heyang Li,&nbsp;Fangxiang Wang,&nbsp;Ling Chen,&nbsp;Hongya Miao,&nbsp;Fangfang Xing,&nbsp;Shupei Yuan,&nbsp;Ziqi Ye,&nbsp;Xifei Li* and Xiaoming He*,&nbsp;","doi":"10.1021/acsnano.5c07701","DOIUrl":null,"url":null,"abstract":"<p >Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu<sup>4+</sup> ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe<sub>2</sub>@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu<sup>4+</sup> substitution at Mo<sup>4+</sup> sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation. The substitution mechanism was elucidated through the Hard and Soft Acid–Base principle, where Cu<sup>4+</sup> (classified as a soft acid) demonstrates significantly stronger coordination affinity with Se<sup>2–</sup> anions (soft bases) compared to the native Mo<sup>4+</sup> cations (hard acids). This electrochemical transition is mediated by ether-based electrolytes coupled with the Cu collector, where the in situ formation of a thin, inorganic-rich SEI layer establishes synergistic ion-transport highways for accelerated Na<sup>+</sup>/Cu<sup>4+</sup> co-diffusion. Temperature-dependent studies reveal Arrhenius-type kinetics: charge transfer is kinetically hindered at ≤ 0 °C but thermally activated at 50–70 °C, confirming that interfacial charge transfer requires thermal energy to overcome activation barriers. This work provides a fundamental guideline for designing stable metal chalcogenide electrodes through interface engineering and electrolyte optimization.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 36","pages":"32322–32334"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte-Driven Cu4+ Substitution in MoSe2: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries\",\"authors\":\"Jing Qin,&nbsp;Xiujuan Wang*,&nbsp;Heyang Li,&nbsp;Fangxiang Wang,&nbsp;Ling Chen,&nbsp;Hongya Miao,&nbsp;Fangfang Xing,&nbsp;Shupei Yuan,&nbsp;Ziqi Ye,&nbsp;Xifei Li* and Xiaoming He*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c07701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu<sup>4+</sup> ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe<sub>2</sub>@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu<sup>4+</sup> substitution at Mo<sup>4+</sup> sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation. The substitution mechanism was elucidated through the Hard and Soft Acid–Base principle, where Cu<sup>4+</sup> (classified as a soft acid) demonstrates significantly stronger coordination affinity with Se<sup>2–</sup> anions (soft bases) compared to the native Mo<sup>4+</sup> cations (hard acids). This electrochemical transition is mediated by ether-based electrolytes coupled with the Cu collector, where the in situ formation of a thin, inorganic-rich SEI layer establishes synergistic ion-transport highways for accelerated Na<sup>+</sup>/Cu<sup>4+</sup> co-diffusion. Temperature-dependent studies reveal Arrhenius-type kinetics: charge transfer is kinetically hindered at ≤ 0 °C but thermally activated at 50–70 °C, confirming that interfacial charge transfer requires thermal energy to overcome activation barriers. This work provides a fundamental guideline for designing stable metal chalcogenide electrodes through interface engineering and electrolyte optimization.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 36\",\"pages\":\"32322–32334\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c07701\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07701","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属硫族化合物(TMCs)作为一种高容量阳极材料已经引起了人们的广泛关注,然而Cu捕收剂在电化学循环过程中介导Cu4+离子在原子水平上取代金属位阳离子的作用机理尚不清楚。为了解决这一问题,本文通过溶剂热工艺和碳化策略合成了cu掺杂MoSe2@C超薄纳米片。系统研究了Mo4+位置Cu4+取代的潜在驱动力以及固体电解质间相(SEI)形成的关键调控作用。通过软硬酸碱原理阐明了取代机理,其中Cu4+(软酸)与Se2-阴离子(软碱)的配位亲和力明显强于原生Mo4+阳离子(硬酸)。这种电化学转变是由醚基电解质与Cu捕收剂耦合介导的,其中原位形成的薄而富无机的SEI层为加速Na+/Cu4+共扩散建立了协同离子传输高速公路。温度相关的研究揭示了arrhenius型动力学:电荷转移在≤0°C时受到动力学阻碍,但在50-70°C时被热激活,这证实了界面电荷转移需要热能来克服激活障碍。这项工作为通过界面工程和电解质优化设计稳定的金属硫族化物电极提供了基本的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrolyte-Driven Cu4+ Substitution in MoSe2: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries

Electrolyte-Driven Cu4+ Substitution in MoSe2: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries

Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu4+ ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe2@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu4+ substitution at Mo4+ sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation. The substitution mechanism was elucidated through the Hard and Soft Acid–Base principle, where Cu4+ (classified as a soft acid) demonstrates significantly stronger coordination affinity with Se2– anions (soft bases) compared to the native Mo4+ cations (hard acids). This electrochemical transition is mediated by ether-based electrolytes coupled with the Cu collector, where the in situ formation of a thin, inorganic-rich SEI layer establishes synergistic ion-transport highways for accelerated Na+/Cu4+ co-diffusion. Temperature-dependent studies reveal Arrhenius-type kinetics: charge transfer is kinetically hindered at ≤ 0 °C but thermally activated at 50–70 °C, confirming that interfacial charge transfer requires thermal energy to overcome activation barriers. This work provides a fundamental guideline for designing stable metal chalcogenide electrodes through interface engineering and electrolyte optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信