Anna E Duncan, Arthur L Malkani, Michael J Stoltz, Nabid Ahmed, Maunil Mullick, John E Whitaker, Andrew Swiergosz, Langan S Smith, Arinan Dourado
{"title":"利用患者和放射学参数选择无骨水泥全膝关节置换术候选人的机器学习模型。","authors":"Anna E Duncan, Arthur L Malkani, Michael J Stoltz, Nabid Ahmed, Maunil Mullick, John E Whitaker, Andrew Swiergosz, Langan S Smith, Arinan Dourado","doi":"10.1002/jor.70059","DOIUrl":null,"url":null,"abstract":"<p><p>The use of cementless total knee arthroplasty (TKA) has significantly increased over the past decade. However, there is no objective criteria or consensus on parameters for patient selection for cementless TKA. The purpose of this study was to develop a machine learning model based on patient and radiographic parameters that could identify patients indicated for cementless TKA. We developed an explainable recommendation model using multiple patient and radiographic parameters (BMI, Age, Gender, Hounsfield Units [HU] from CT for density of tibia). The predictive model was trained on medical, operative, and radiographic data of 217 patients who underwent primary TKA. HU density measurements of four quadrants of the proximal tibia were obtained at region of interest on preoperative CT scans. which were then incorporated into the model as a surrogate for bone mineral density. The model employs Local Interpretable Model-agnostic Explanations in combination with bagging ensemble techniques for artificial neural networks. Model testing on the 217-patient cohort included 22 cemented and 38 cementless TKA cases. The model successfully identified 19 cemented patients (sensitivity: 86.4%) and 37 cementless patients (specificity: 97.4%) with an AUC = 0.94. Use of cementless TKA has grown significantly. There are currently no standard radiographic criteria for patient selection. Our machine learning model demonstrated 97.4% specificity and should improve with more training data. Future improvements will include incorporating additional cases and developing automated HU extraction techniques.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Model for Selection of Cementless Total Knee Arthroplasty Candidates Utilizing Patient and Radiographic Parameters.\",\"authors\":\"Anna E Duncan, Arthur L Malkani, Michael J Stoltz, Nabid Ahmed, Maunil Mullick, John E Whitaker, Andrew Swiergosz, Langan S Smith, Arinan Dourado\",\"doi\":\"10.1002/jor.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of cementless total knee arthroplasty (TKA) has significantly increased over the past decade. However, there is no objective criteria or consensus on parameters for patient selection for cementless TKA. The purpose of this study was to develop a machine learning model based on patient and radiographic parameters that could identify patients indicated for cementless TKA. We developed an explainable recommendation model using multiple patient and radiographic parameters (BMI, Age, Gender, Hounsfield Units [HU] from CT for density of tibia). The predictive model was trained on medical, operative, and radiographic data of 217 patients who underwent primary TKA. HU density measurements of four quadrants of the proximal tibia were obtained at region of interest on preoperative CT scans. which were then incorporated into the model as a surrogate for bone mineral density. The model employs Local Interpretable Model-agnostic Explanations in combination with bagging ensemble techniques for artificial neural networks. Model testing on the 217-patient cohort included 22 cemented and 38 cementless TKA cases. The model successfully identified 19 cemented patients (sensitivity: 86.4%) and 37 cementless patients (specificity: 97.4%) with an AUC = 0.94. Use of cementless TKA has grown significantly. There are currently no standard radiographic criteria for patient selection. Our machine learning model demonstrated 97.4% specificity and should improve with more training data. Future improvements will include incorporating additional cases and developing automated HU extraction techniques.</p>\",\"PeriodicalId\":16650,\"journal\":{\"name\":\"Journal of Orthopaedic Research®\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Research®\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jor.70059\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jor.70059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Machine Learning Model for Selection of Cementless Total Knee Arthroplasty Candidates Utilizing Patient and Radiographic Parameters.
The use of cementless total knee arthroplasty (TKA) has significantly increased over the past decade. However, there is no objective criteria or consensus on parameters for patient selection for cementless TKA. The purpose of this study was to develop a machine learning model based on patient and radiographic parameters that could identify patients indicated for cementless TKA. We developed an explainable recommendation model using multiple patient and radiographic parameters (BMI, Age, Gender, Hounsfield Units [HU] from CT for density of tibia). The predictive model was trained on medical, operative, and radiographic data of 217 patients who underwent primary TKA. HU density measurements of four quadrants of the proximal tibia were obtained at region of interest on preoperative CT scans. which were then incorporated into the model as a surrogate for bone mineral density. The model employs Local Interpretable Model-agnostic Explanations in combination with bagging ensemble techniques for artificial neural networks. Model testing on the 217-patient cohort included 22 cemented and 38 cementless TKA cases. The model successfully identified 19 cemented patients (sensitivity: 86.4%) and 37 cementless patients (specificity: 97.4%) with an AUC = 0.94. Use of cementless TKA has grown significantly. There are currently no standard radiographic criteria for patient selection. Our machine learning model demonstrated 97.4% specificity and should improve with more training data. Future improvements will include incorporating additional cases and developing automated HU extraction techniques.
期刊介绍:
The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.