利用废香蕉皮和Maxilon Blue 5G声降解合成纳米铁颗粒。

IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Şennur Merve Yakut
{"title":"利用废香蕉皮和Maxilon Blue 5G声降解合成纳米铁颗粒。","authors":"Şennur Merve Yakut","doi":"10.1080/15226514.2025.2554171","DOIUrl":null,"url":null,"abstract":"<p><p>The green synthesis method is a significant approach that offers several advantages, including simplicity, rapidity, and cost-effectiveness in the synthesis of nanoparticles. Iron nanoparticles were synthesized in this work using waste banana peel extract as a capping and reducing agent. The produced nanoparticles were then subjected to a number of characterization procedures, such as Raman spectroscopy, X-ray diffractometry (XRD), zeta potential analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-VIS) absorption spectroscopy, field scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA). The effect of the nanoparticles on dye elimination was next investigated separately and with the aid of ultrasound irridation. To ascertain the efficacy of the nanoparticles, their performance was compared with that of the classical Fenton process. The results showed that 99.7% of the dye was removed within 60 min with a 10 mg/L iron concentration, 10 mg/L hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) concentration, and 53 kHz ultrasound radiation. In FeNPs reuse, 91% efficiency was achieved in the 2nd cycle, 56% in the 3rd cycle and 51.37% in the 4th cycle.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-13"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron nanoparticle synthesis using waste banana peels and Maxilon Blue 5G sono-degradation.\",\"authors\":\"Şennur Merve Yakut\",\"doi\":\"10.1080/15226514.2025.2554171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The green synthesis method is a significant approach that offers several advantages, including simplicity, rapidity, and cost-effectiveness in the synthesis of nanoparticles. Iron nanoparticles were synthesized in this work using waste banana peel extract as a capping and reducing agent. The produced nanoparticles were then subjected to a number of characterization procedures, such as Raman spectroscopy, X-ray diffractometry (XRD), zeta potential analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-VIS) absorption spectroscopy, field scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA). The effect of the nanoparticles on dye elimination was next investigated separately and with the aid of ultrasound irridation. To ascertain the efficacy of the nanoparticles, their performance was compared with that of the classical Fenton process. The results showed that 99.7% of the dye was removed within 60 min with a 10 mg/L iron concentration, 10 mg/L hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) concentration, and 53 kHz ultrasound radiation. In FeNPs reuse, 91% efficiency was achieved in the 2nd cycle, 56% in the 3rd cycle and 51.37% in the 4th cycle.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2554171\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2554171","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

绿色合成方法是一种重要的方法,它提供了几个优点,包括简单、快速和成本效益的纳米颗粒合成。本文以废香蕉皮提取物为封盖还原剂,合成了铁纳米颗粒。制备的纳米颗粒随后进行了一系列表征程序,如拉曼光谱、x射线衍射(XRD)、ζ电位分析、傅里叶变换红外(FT-IR)光谱、紫外-可见(UV-VIS)吸收光谱、场扫描电子显微镜(FE-SEM)、能量色散x射线分析(EDX)和热重分析(TGA)。在超声波的辅助下,研究了纳米颗粒对染料去除的影响。为了确定纳米颗粒的有效性,将其性能与经典芬顿工艺的性能进行了比较。结果表明,在铁浓度为10 mg/L、过氧化氢(H2O2)浓度为10 mg/L、超声辐射为53 kHz的条件下,60 min内染料去除率为99.7%。FeNPs的二次循环利用率为91%,第三次循环利用率为56%,第4次循环利用率为51.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iron nanoparticle synthesis using waste banana peels and Maxilon Blue 5G sono-degradation.

The green synthesis method is a significant approach that offers several advantages, including simplicity, rapidity, and cost-effectiveness in the synthesis of nanoparticles. Iron nanoparticles were synthesized in this work using waste banana peel extract as a capping and reducing agent. The produced nanoparticles were then subjected to a number of characterization procedures, such as Raman spectroscopy, X-ray diffractometry (XRD), zeta potential analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-VIS) absorption spectroscopy, field scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA). The effect of the nanoparticles on dye elimination was next investigated separately and with the aid of ultrasound irridation. To ascertain the efficacy of the nanoparticles, their performance was compared with that of the classical Fenton process. The results showed that 99.7% of the dye was removed within 60 min with a 10 mg/L iron concentration, 10 mg/L hydrogen peroxide (H2O2) concentration, and 53 kHz ultrasound radiation. In FeNPs reuse, 91% efficiency was achieved in the 2nd cycle, 56% in the 3rd cycle and 51.37% in the 4th cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信