Eren Aytekin , Semer Maksoud , Bakhos A. Tannous , Sibel Bozdağ Pehlivan , Christian E. Badr
{"title":"双作用纳米疗法:替莫唑胺负载,抗pd - l1 scfv功能化脂质纳米载体靶向胶质母细胞瘤治疗。","authors":"Eren Aytekin , Semer Maksoud , Bakhos A. Tannous , Sibel Bozdağ Pehlivan , Christian E. Badr","doi":"10.1016/j.ejps.2025.107255","DOIUrl":null,"url":null,"abstract":"<div><div>Glioblastoma (GBM) is a highly malignant brain tumor with limited treatment options and poor prognosis.</div><div>GBM exhibits resistance to conventional therapies, including temozolomide (TMZ), radiotherapy, and immunotherapy, partly due to immunosuppressive mechanisms such as programmed death-ligand 1 (PD-L1) overexpression. To address these challenges, we developed TMZ-loaded nanostructured lipid carriers (NLCs) conjugated with anti-PD-L1 single-chain variable fragments (scFv) for dual chemo-immunotherapy.</div><div>The anti-PD-L1 scFv enabled active targeting of PD-L1-expressing tumor cells while mitigating immune evasion, and the NLCs efficiently crossed the blood-brain barrier (BBB), delivering TMZ to the tumor site. In vitro studies confirmed nanoparticle internalization by GL261 glioma cells and specific binding of the conjugated scFv to PD-L1. In vivo studies using the GL261/C57BL/6 mouse model demonstrated that TMZ-NLCs conjugated with anti-PD-L1 scFv (TMZ-NP-scFv) stabilized tumor growth by the third week, unlike other treatment groups. While all therapeutic groups (TMZ solution, TMZ-NP, and anti-PD-L1 scFv alone) significantly improved survival compared to controls, the TMZ-NP-scFv group exhibited the most pronounced survival benefit.</div><div>These results highlight the potential of TMZ-loaded, PD-L1-targeted NLCs as a synergistic strategy to enhance GBM treatment by combining chemotherapy and immune checkpoint blockade.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"213 ","pages":"Article 107255"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-action nanotherapy: Temozolomide-loaded, anti-PD-L1 scFv-functionalized lipid nanocarriers for targeted glioblastoma therapy\",\"authors\":\"Eren Aytekin , Semer Maksoud , Bakhos A. Tannous , Sibel Bozdağ Pehlivan , Christian E. Badr\",\"doi\":\"10.1016/j.ejps.2025.107255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glioblastoma (GBM) is a highly malignant brain tumor with limited treatment options and poor prognosis.</div><div>GBM exhibits resistance to conventional therapies, including temozolomide (TMZ), radiotherapy, and immunotherapy, partly due to immunosuppressive mechanisms such as programmed death-ligand 1 (PD-L1) overexpression. To address these challenges, we developed TMZ-loaded nanostructured lipid carriers (NLCs) conjugated with anti-PD-L1 single-chain variable fragments (scFv) for dual chemo-immunotherapy.</div><div>The anti-PD-L1 scFv enabled active targeting of PD-L1-expressing tumor cells while mitigating immune evasion, and the NLCs efficiently crossed the blood-brain barrier (BBB), delivering TMZ to the tumor site. In vitro studies confirmed nanoparticle internalization by GL261 glioma cells and specific binding of the conjugated scFv to PD-L1. In vivo studies using the GL261/C57BL/6 mouse model demonstrated that TMZ-NLCs conjugated with anti-PD-L1 scFv (TMZ-NP-scFv) stabilized tumor growth by the third week, unlike other treatment groups. While all therapeutic groups (TMZ solution, TMZ-NP, and anti-PD-L1 scFv alone) significantly improved survival compared to controls, the TMZ-NP-scFv group exhibited the most pronounced survival benefit.</div><div>These results highlight the potential of TMZ-loaded, PD-L1-targeted NLCs as a synergistic strategy to enhance GBM treatment by combining chemotherapy and immune checkpoint blockade.</div></div>\",\"PeriodicalId\":12018,\"journal\":{\"name\":\"European Journal of Pharmaceutical Sciences\",\"volume\":\"213 \",\"pages\":\"Article 107255\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928098725002532\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098725002532","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Glioblastoma (GBM) is a highly malignant brain tumor with limited treatment options and poor prognosis.
GBM exhibits resistance to conventional therapies, including temozolomide (TMZ), radiotherapy, and immunotherapy, partly due to immunosuppressive mechanisms such as programmed death-ligand 1 (PD-L1) overexpression. To address these challenges, we developed TMZ-loaded nanostructured lipid carriers (NLCs) conjugated with anti-PD-L1 single-chain variable fragments (scFv) for dual chemo-immunotherapy.
The anti-PD-L1 scFv enabled active targeting of PD-L1-expressing tumor cells while mitigating immune evasion, and the NLCs efficiently crossed the blood-brain barrier (BBB), delivering TMZ to the tumor site. In vitro studies confirmed nanoparticle internalization by GL261 glioma cells and specific binding of the conjugated scFv to PD-L1. In vivo studies using the GL261/C57BL/6 mouse model demonstrated that TMZ-NLCs conjugated with anti-PD-L1 scFv (TMZ-NP-scFv) stabilized tumor growth by the third week, unlike other treatment groups. While all therapeutic groups (TMZ solution, TMZ-NP, and anti-PD-L1 scFv alone) significantly improved survival compared to controls, the TMZ-NP-scFv group exhibited the most pronounced survival benefit.
These results highlight the potential of TMZ-loaded, PD-L1-targeted NLCs as a synergistic strategy to enhance GBM treatment by combining chemotherapy and immune checkpoint blockade.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.