变构位点预测计算策略的最新进展:机器学习、分子动力学和基于网络的方法。

IF 7.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Jianxiang Huang , Guo Tang , Ning Liu , Xiaolong Li , Shaoyong Lu
{"title":"变构位点预测计算策略的最新进展:机器学习、分子动力学和基于网络的方法。","authors":"Jianxiang Huang ,&nbsp;Guo Tang ,&nbsp;Ning Liu ,&nbsp;Xiaolong Li ,&nbsp;Shaoyong Lu","doi":"10.1016/j.drudis.2025.104466","DOIUrl":null,"url":null,"abstract":"<div><div>The landscape of allosteric drug discovery is undergoing a transformative shift, driven by the integration of three computational approaches: machine learning (ML), molecular dynamics (MD) simulations, and network theory. ML identifies potential allosteric sites from multidimensional biological datasets; MD simulations, empowered by enhanced sampling algorithms, reveal transient conformational states; and network analyses uncover communication pathways, further aiding in site identification. Their synergy enables rational allosteric modulator design. However, challenges like high computational costs, limited datasets, and model generalizability persist. Future strategies will leverage ML-accelerated MD, open-science data platforms, and advanced ML techniques, including transfer learning with models like AlphaFold and ESM-2. This multidisciplinary approach holds great promise to enhance allosteric drug discovery, driving therapeutic breakthroughs in the post-structural genomics era.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"30 10","pages":"Article 104466"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in computational strategies for allosteric site prediction: Machine learning, molecular dynamics, and network-based approaches\",\"authors\":\"Jianxiang Huang ,&nbsp;Guo Tang ,&nbsp;Ning Liu ,&nbsp;Xiaolong Li ,&nbsp;Shaoyong Lu\",\"doi\":\"10.1016/j.drudis.2025.104466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The landscape of allosteric drug discovery is undergoing a transformative shift, driven by the integration of three computational approaches: machine learning (ML), molecular dynamics (MD) simulations, and network theory. ML identifies potential allosteric sites from multidimensional biological datasets; MD simulations, empowered by enhanced sampling algorithms, reveal transient conformational states; and network analyses uncover communication pathways, further aiding in site identification. Their synergy enables rational allosteric modulator design. However, challenges like high computational costs, limited datasets, and model generalizability persist. Future strategies will leverage ML-accelerated MD, open-science data platforms, and advanced ML techniques, including transfer learning with models like AlphaFold and ESM-2. This multidisciplinary approach holds great promise to enhance allosteric drug discovery, driving therapeutic breakthroughs in the post-structural genomics era.</div></div>\",\"PeriodicalId\":301,\"journal\":{\"name\":\"Drug Discovery Today\",\"volume\":\"30 10\",\"pages\":\"Article 104466\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359644625001795\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644625001795","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在机器学习(ML)、分子动力学(MD)模拟和网络理论这三种计算方法的整合推动下,变构药物发现的前景正在经历一场变革。机器学习从多维生物数据集中识别潜在的变构位点;MD模拟,通过增强的采样算法,揭示瞬态构象状态;网络分析揭示了通信途径,进一步帮助识别站点。它们的协同作用使变构调制器设计变得合理。然而,诸如高计算成本、有限的数据集和模型可泛化性等挑战仍然存在。未来的战略将利用ML加速的MD、开放科学数据平台和先进的ML技术,包括使用AlphaFold和ESM-2等模型进行迁移学习。这种多学科的方法有望增强变构药物的发现,推动后结构基因组学时代的治疗突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in computational strategies for allosteric site prediction: Machine learning, molecular dynamics, and network-based approaches
The landscape of allosteric drug discovery is undergoing a transformative shift, driven by the integration of three computational approaches: machine learning (ML), molecular dynamics (MD) simulations, and network theory. ML identifies potential allosteric sites from multidimensional biological datasets; MD simulations, empowered by enhanced sampling algorithms, reveal transient conformational states; and network analyses uncover communication pathways, further aiding in site identification. Their synergy enables rational allosteric modulator design. However, challenges like high computational costs, limited datasets, and model generalizability persist. Future strategies will leverage ML-accelerated MD, open-science data platforms, and advanced ML techniques, including transfer learning with models like AlphaFold and ESM-2. This multidisciplinary approach holds great promise to enhance allosteric drug discovery, driving therapeutic breakthroughs in the post-structural genomics era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信