光交联黏附透明质酸水凝胶经粘膜给药

IF 3.4 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Seth Asamoah, Martin Pravda, Eva Šnejdrová, Martin Čepa, Mrázek Jiří, Carmen Gruber-Traub, Vladimír Velebný
{"title":"光交联黏附透明质酸水凝胶经粘膜给药","authors":"Seth Asamoah,&nbsp;Martin Pravda,&nbsp;Eva Šnejdrová,&nbsp;Martin Čepa,&nbsp;Mrázek Jiří,&nbsp;Carmen Gruber-Traub,&nbsp;Vladimír Velebný","doi":"10.1002/jbm.b.35652","DOIUrl":null,"url":null,"abstract":"<p>Drug delivery to the central nervous system (CNS) is primarily hindered by the blood–brain barrier (BBB). To address this, mucoadhesive formulations have been designed to prolong residence time at the application site. In this study, we comprehensively characterized the physicochemical and mucoadhesive properties of hyaluronic acid tyramine (HATA) photocrosslinked hydrogels using rheological methods, nanoindentation, contact angle goniometry, and advanced confocal microscopy. A novel parameter, photon count per pixel, was introduced through confocal microscopy to assess hydrogel stability and mucoadhesion on ex vivo porcine olfactory tissues. Crosslinked hydrogels (1% and 2% w/v) exhibited stable mucoadhesive properties, ranging between 16.5 and 18 photon counts per pixel, whereas uncrosslinked counterparts typical of classical nasal formulations showed significant photon count losses (71% and 50% for 1% and 2% HATA, respectively). Nanoindentation analysis revealed a correlation between photoirradiation time, effective Young's modulus, and mucoadhesion, identifying 1 min of irradiation as optimal across all concentrations tested. The optimized hydrogels demonstrated mucoadhesive forces of 0.263, 0.412, and 0.701 mN mm<sup>−2</sup>, corresponding to Young's modulus values of 1995, 2465, and 2985 Pa for 1%, 2%, and 3% w/v HATA, respectively. These results highlight the importance of crosslinking for enhancing hydrogel stability and mucoadhesion. Additionally, BSA-labeled rhodamine served as a model protein drug in low-swelling hydrogels for drug release studies, laying the foundation for further optimization in targeted nasal drug delivery systems.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35652","citationCount":"0","resultStr":"{\"title\":\"Photocrosslinked Mucoadhesive Hyaluronic Acid Hydrogel for Transmucosal Drug Delivery\",\"authors\":\"Seth Asamoah,&nbsp;Martin Pravda,&nbsp;Eva Šnejdrová,&nbsp;Martin Čepa,&nbsp;Mrázek Jiří,&nbsp;Carmen Gruber-Traub,&nbsp;Vladimír Velebný\",\"doi\":\"10.1002/jbm.b.35652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drug delivery to the central nervous system (CNS) is primarily hindered by the blood–brain barrier (BBB). To address this, mucoadhesive formulations have been designed to prolong residence time at the application site. In this study, we comprehensively characterized the physicochemical and mucoadhesive properties of hyaluronic acid tyramine (HATA) photocrosslinked hydrogels using rheological methods, nanoindentation, contact angle goniometry, and advanced confocal microscopy. A novel parameter, photon count per pixel, was introduced through confocal microscopy to assess hydrogel stability and mucoadhesion on ex vivo porcine olfactory tissues. Crosslinked hydrogels (1% and 2% w/v) exhibited stable mucoadhesive properties, ranging between 16.5 and 18 photon counts per pixel, whereas uncrosslinked counterparts typical of classical nasal formulations showed significant photon count losses (71% and 50% for 1% and 2% HATA, respectively). Nanoindentation analysis revealed a correlation between photoirradiation time, effective Young's modulus, and mucoadhesion, identifying 1 min of irradiation as optimal across all concentrations tested. The optimized hydrogels demonstrated mucoadhesive forces of 0.263, 0.412, and 0.701 mN mm<sup>−2</sup>, corresponding to Young's modulus values of 1995, 2465, and 2985 Pa for 1%, 2%, and 3% w/v HATA, respectively. These results highlight the importance of crosslinking for enhancing hydrogel stability and mucoadhesion. Additionally, BSA-labeled rhodamine served as a model protein drug in low-swelling hydrogels for drug release studies, laying the foundation for further optimization in targeted nasal drug delivery systems.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 9\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35652\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35652\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35652","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

药物向中枢神经系统(CNS)的传递主要受到血脑屏障(BBB)的阻碍。为了解决这个问题,我们设计了黏合剂配方,以延长在应用现场的停留时间。在这项研究中,我们综合表征了透明质酸酪胺(HATA)光交联水凝胶的物理化学和粘接性能,使用流变学方法,纳米压痕,接触角测量和先进的共聚焦显微镜。通过共聚焦显微镜引入了一个新的参数,即每像素光子数,来评估水凝胶在猪离体嗅觉组织上的稳定性和黏附性。交联水凝胶(1%和2% w/v)表现出稳定的粘接性能,范围在16.5到18个光子计数/像素之间,而经典鼻配方的非交联水凝胶则表现出显著的光子计数损失(1%和2% HATA分别为71%和50%)。纳米压痕分析揭示了光照射时间、有效杨氏模量和黏附之间的相关性,在所有测试浓度下,照射1分钟是最佳的。优化后的水凝胶在1%、2%和3% w/v HATA条件下的黏附力分别为0.263、0.412和0.701 mN mm−2,对应的杨氏模量分别为1995、2465和2985 Pa。这些结果强调了交联对增强水凝胶稳定性和黏附的重要性。此外,bsa标记罗丹明作为低肿胀水凝胶模型蛋白药物进行药物释放研究,为进一步优化靶向鼻腔给药系统奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photocrosslinked Mucoadhesive Hyaluronic Acid Hydrogel for Transmucosal Drug Delivery

Photocrosslinked Mucoadhesive Hyaluronic Acid Hydrogel for Transmucosal Drug Delivery

Drug delivery to the central nervous system (CNS) is primarily hindered by the blood–brain barrier (BBB). To address this, mucoadhesive formulations have been designed to prolong residence time at the application site. In this study, we comprehensively characterized the physicochemical and mucoadhesive properties of hyaluronic acid tyramine (HATA) photocrosslinked hydrogels using rheological methods, nanoindentation, contact angle goniometry, and advanced confocal microscopy. A novel parameter, photon count per pixel, was introduced through confocal microscopy to assess hydrogel stability and mucoadhesion on ex vivo porcine olfactory tissues. Crosslinked hydrogels (1% and 2% w/v) exhibited stable mucoadhesive properties, ranging between 16.5 and 18 photon counts per pixel, whereas uncrosslinked counterparts typical of classical nasal formulations showed significant photon count losses (71% and 50% for 1% and 2% HATA, respectively). Nanoindentation analysis revealed a correlation between photoirradiation time, effective Young's modulus, and mucoadhesion, identifying 1 min of irradiation as optimal across all concentrations tested. The optimized hydrogels demonstrated mucoadhesive forces of 0.263, 0.412, and 0.701 mN mm−2, corresponding to Young's modulus values of 1995, 2465, and 2985 Pa for 1%, 2%, and 3% w/v HATA, respectively. These results highlight the importance of crosslinking for enhancing hydrogel stability and mucoadhesion. Additionally, BSA-labeled rhodamine served as a model protein drug in low-swelling hydrogels for drug release studies, laying the foundation for further optimization in targeted nasal drug delivery systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信