增强聚(l -丙交酯)/聚(d -丙交酯)立体配合物与聚己二甲酸丁二酯的机械和热性能:面向可持续未来的创新生物聚合物解决方案

IF 5 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Onpreeya Veang-In, Bancha Lamlerd, Samaneh Dehghani, Dutchanee Pholharn, Yottha Srithep
{"title":"增强聚(l -丙交酯)/聚(d -丙交酯)立体配合物与聚己二甲酸丁二酯的机械和热性能:面向可持续未来的创新生物聚合物解决方案","authors":"Onpreeya Veang-In,&nbsp;Bancha Lamlerd,&nbsp;Samaneh Dehghani,&nbsp;Dutchanee Pholharn,&nbsp;Yottha Srithep","doi":"10.1007/s10924-025-03644-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the formation and reinforcement effects of stereocomplex polylactide (SC-PLA) when blended with poly butylene adipate-co-terephthalate (PBAT). SC-PLA was prepared by blending equimolar amounts of PLLA and PDLA, and then incorporated with PBAT at varying concentrations (10–30 wt%). The formation of stereocomplex crystals was confirmed by X-ray diffraction, which revealed characteristic diffraction peaks at 11.9°, 20.6°, and 23.9°, corresponding to the triclinic crystalline structure of SC-PLA. Differential scanning calorimetry (DSC) also confirmed the formation of SC crystallites, indicated by a distinct melting peak at ~ 224 °C, approximately 50 °C higher than that of homopolymeric PLA. SC-PLA enhanced tensile strength, modulus, and thermal stability, while PBAT improved ductility. Blends with 10–20 wt% PBAT demonstrated optimal mechanical performance, outperforming neat PLLA and PLLA/PBAT systems in both strength and elongation at break. Heat deflection temperature and thermal resistance analysis showed excellent dimensional stability at elevated temperatures, particularly in SC-PLA/PBAT systems. Scanning electron microscopy revealed improved phase morphology and reduced interfacial voids, suggesting physical compatibilization via SC crystallites. These results highlight the synergistic potential of SC-PLA and PBAT to create biodegradable materials with balanced strength, flexibility, and heat resistance for sustainable applications.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 9","pages":"4022 - 4037"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Mechanical and Thermal Properties of Poly(L-lactide)/Poly(D-lactide) Stereocomplex with Polybutylene Adipate-co-Terephthalate: Innovative Biopolymer Solutions for a Sustainable Future\",\"authors\":\"Onpreeya Veang-In,&nbsp;Bancha Lamlerd,&nbsp;Samaneh Dehghani,&nbsp;Dutchanee Pholharn,&nbsp;Yottha Srithep\",\"doi\":\"10.1007/s10924-025-03644-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the formation and reinforcement effects of stereocomplex polylactide (SC-PLA) when blended with poly butylene adipate-co-terephthalate (PBAT). SC-PLA was prepared by blending equimolar amounts of PLLA and PDLA, and then incorporated with PBAT at varying concentrations (10–30 wt%). The formation of stereocomplex crystals was confirmed by X-ray diffraction, which revealed characteristic diffraction peaks at 11.9°, 20.6°, and 23.9°, corresponding to the triclinic crystalline structure of SC-PLA. Differential scanning calorimetry (DSC) also confirmed the formation of SC crystallites, indicated by a distinct melting peak at ~ 224 °C, approximately 50 °C higher than that of homopolymeric PLA. SC-PLA enhanced tensile strength, modulus, and thermal stability, while PBAT improved ductility. Blends with 10–20 wt% PBAT demonstrated optimal mechanical performance, outperforming neat PLLA and PLLA/PBAT systems in both strength and elongation at break. Heat deflection temperature and thermal resistance analysis showed excellent dimensional stability at elevated temperatures, particularly in SC-PLA/PBAT systems. Scanning electron microscopy revealed improved phase morphology and reduced interfacial voids, suggesting physical compatibilization via SC crystallites. These results highlight the synergistic potential of SC-PLA and PBAT to create biodegradable materials with balanced strength, flexibility, and heat resistance for sustainable applications.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 9\",\"pages\":\"4022 - 4037\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03644-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03644-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了立体配合物聚乳酸(SC-PLA)与聚己二酸丁二酯共对苯二甲酸酯(PBAT)共混时的形成和增强效果。将等摩尔量的PLLA和PDLA混合制备SC-PLA,然后加入不同浓度的PBAT (10-30 wt%)。通过x射线衍射证实了立体配合物晶体的形成,在11.9°、20.6°和23.9°处发现了SC-PLA的特征衍射峰,与SC-PLA的三斜晶体结构相对应。差示扫描量热法(DSC)也证实了SC结晶的形成,表明在~ 224℃有明显的熔融峰,比均聚PLA高约50℃。SC-PLA提高了拉伸强度、模量和热稳定性,而PBAT提高了延展性。含有10 - 20%重量% PBAT的共混物表现出最佳的机械性能,在强度和断裂伸长率方面优于纯PLLA和PLLA/PBAT体系。热挠曲温度和热阻分析表明,在高温下,SC-PLA/PBAT体系具有优异的尺寸稳定性。扫描电镜显示相形态改善,界面空隙减少,表明SC晶体的物理增容作用。这些结果突出了SC-PLA和PBAT的协同潜力,可以创造出具有平衡强度、柔韧性和耐热性的生物可降解材料,用于可持续应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing the Mechanical and Thermal Properties of Poly(L-lactide)/Poly(D-lactide) Stereocomplex with Polybutylene Adipate-co-Terephthalate: Innovative Biopolymer Solutions for a Sustainable Future

Enhancing the Mechanical and Thermal Properties of Poly(L-lactide)/Poly(D-lactide) Stereocomplex with Polybutylene Adipate-co-Terephthalate: Innovative Biopolymer Solutions for a Sustainable Future

Enhancing the Mechanical and Thermal Properties of Poly(L-lactide)/Poly(D-lactide) Stereocomplex with Polybutylene Adipate-co-Terephthalate: Innovative Biopolymer Solutions for a Sustainable Future

This study investigates the formation and reinforcement effects of stereocomplex polylactide (SC-PLA) when blended with poly butylene adipate-co-terephthalate (PBAT). SC-PLA was prepared by blending equimolar amounts of PLLA and PDLA, and then incorporated with PBAT at varying concentrations (10–30 wt%). The formation of stereocomplex crystals was confirmed by X-ray diffraction, which revealed characteristic diffraction peaks at 11.9°, 20.6°, and 23.9°, corresponding to the triclinic crystalline structure of SC-PLA. Differential scanning calorimetry (DSC) also confirmed the formation of SC crystallites, indicated by a distinct melting peak at ~ 224 °C, approximately 50 °C higher than that of homopolymeric PLA. SC-PLA enhanced tensile strength, modulus, and thermal stability, while PBAT improved ductility. Blends with 10–20 wt% PBAT demonstrated optimal mechanical performance, outperforming neat PLLA and PLLA/PBAT systems in both strength and elongation at break. Heat deflection temperature and thermal resistance analysis showed excellent dimensional stability at elevated temperatures, particularly in SC-PLA/PBAT systems. Scanning electron microscopy revealed improved phase morphology and reduced interfacial voids, suggesting physical compatibilization via SC crystallites. These results highlight the synergistic potential of SC-PLA and PBAT to create biodegradable materials with balanced strength, flexibility, and heat resistance for sustainable applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信