含Cattaneo-Christov热流通量的热活性混合纳米流体在多孔盘面上流动的数值研究

Q1 Chemical Engineering
Talha Anwar , Qadeer Raza , Bagh Ali , Ehsanullah Hemati
{"title":"含Cattaneo-Christov热流通量的热活性混合纳米流体在多孔盘面上流动的数值研究","authors":"Talha Anwar ,&nbsp;Qadeer Raza ,&nbsp;Bagh Ali ,&nbsp;Ehsanullah Hemati","doi":"10.1016/j.ijft.2025.101389","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the unsteady three-dimensional mixed convection flow of a hybrid nanofluid over an expanding or contracting porous disk, taking into account Cattaneo–Christov heat flux, activation energy, and chemical reaction effects. Two types of nanoparticles, metallic (Cu) and non-metallic (Al₂O₃) are dispersed in a water-based fluid, accounting for nanolayer thermal conductivity and internal heat generation. The governing nonlinear partial differential equations are transformed via similarity variables and solved numerically using an optimized shooting method with a fourth-order Runge–Kutta scheme. Results indicate that increasing the mixed convection parameter significantly enhances radial velocity, while a higher buoyancy ratio suppresses it. Activation energy and thermal gradients were found to intensify mass transfer, whereas strong internal heat generation reduces heat transfer efficiency due to thermal resistance. Additionally, higher nanoparticle volume fractions improve momentum transport but may lower thermal and mass diffusivity. These findings contribute to the design and optimization of advanced thermal systems, with real-life applications in rotating thermal reactors, porous catalytic converters, energy harvesting devices, and magnetically controlled nanofluid transport.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"29 ","pages":"Article 101389"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of thermoreactive hybrid nanofluid flow with Cattaneo–Christov heat flux over a porous disk\",\"authors\":\"Talha Anwar ,&nbsp;Qadeer Raza ,&nbsp;Bagh Ali ,&nbsp;Ehsanullah Hemati\",\"doi\":\"10.1016/j.ijft.2025.101389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the unsteady three-dimensional mixed convection flow of a hybrid nanofluid over an expanding or contracting porous disk, taking into account Cattaneo–Christov heat flux, activation energy, and chemical reaction effects. Two types of nanoparticles, metallic (Cu) and non-metallic (Al₂O₃) are dispersed in a water-based fluid, accounting for nanolayer thermal conductivity and internal heat generation. The governing nonlinear partial differential equations are transformed via similarity variables and solved numerically using an optimized shooting method with a fourth-order Runge–Kutta scheme. Results indicate that increasing the mixed convection parameter significantly enhances radial velocity, while a higher buoyancy ratio suppresses it. Activation energy and thermal gradients were found to intensify mass transfer, whereas strong internal heat generation reduces heat transfer efficiency due to thermal resistance. Additionally, higher nanoparticle volume fractions improve momentum transport but may lower thermal and mass diffusivity. These findings contribute to the design and optimization of advanced thermal systems, with real-life applications in rotating thermal reactors, porous catalytic converters, energy harvesting devices, and magnetically controlled nanofluid transport.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"29 \",\"pages\":\"Article 101389\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725003350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

考虑Cattaneo-Christov热流密度、活化能和化学反应效应,研究了混合纳米流体在膨胀或收缩多孔圆盘上的非定常三维混合对流流动。两种类型的纳米颗粒,金属(Cu)和非金属(Al₂O₃)分散在水基流体中,占纳米层导热性和内部热产生。通过相似变量变换控制非线性偏微分方程,采用四阶龙格-库塔格式优化射击法进行数值求解。结果表明,增大混合对流参数可显著提高径向速度,而增大浮力比则抑制径向速度。发现活化能和热梯度加剧了传质,而由于热阻,强烈的内部热产生降低了传热效率。此外,更高的纳米颗粒体积分数改善动量传递,但可能降低热扩散率和质量扩散率。这些发现有助于设计和优化先进的热系统,并在旋转热反应器、多孔催化转化器、能量收集装置和磁控纳米流体传输等实际应用中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigation of thermoreactive hybrid nanofluid flow with Cattaneo–Christov heat flux over a porous disk
This study investigates the unsteady three-dimensional mixed convection flow of a hybrid nanofluid over an expanding or contracting porous disk, taking into account Cattaneo–Christov heat flux, activation energy, and chemical reaction effects. Two types of nanoparticles, metallic (Cu) and non-metallic (Al₂O₃) are dispersed in a water-based fluid, accounting for nanolayer thermal conductivity and internal heat generation. The governing nonlinear partial differential equations are transformed via similarity variables and solved numerically using an optimized shooting method with a fourth-order Runge–Kutta scheme. Results indicate that increasing the mixed convection parameter significantly enhances radial velocity, while a higher buoyancy ratio suppresses it. Activation energy and thermal gradients were found to intensify mass transfer, whereas strong internal heat generation reduces heat transfer efficiency due to thermal resistance. Additionally, higher nanoparticle volume fractions improve momentum transport but may lower thermal and mass diffusivity. These findings contribute to the design and optimization of advanced thermal systems, with real-life applications in rotating thermal reactors, porous catalytic converters, energy harvesting devices, and magnetically controlled nanofluid transport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信